Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Overview

Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Build Status PyPI version

Deep generative models are rapidly becoming popular for the discovery of new molecules and materials. Such models learn on a large collection of molecular structures and produce novel compounds. In this work, we introduce Molecular Sets (MOSES), a benchmarking platform to support research on machine learning for drug discovery. MOSES implements several popular molecular generation models and provides a set of metrics to evaluate the quality and diversity of generated molecules. With MOSES, we aim to standardize the research on molecular generation and facilitate the sharing and comparison of new models.

For more details, please refer to the paper.

If you are using MOSES in your research paper, please cite us as

@article{10.3389/fphar.2020.565644,
  title={{M}olecular {S}ets ({MOSES}): {A} {B}enchmarking {P}latform for {M}olecular {G}eneration {M}odels},
  author={Polykovskiy, Daniil and Zhebrak, Alexander and Sanchez-Lengeling, Benjamin and Golovanov, Sergey and Tatanov, Oktai and Belyaev, Stanislav and Kurbanov, Rauf and Artamonov, Aleksey and Aladinskiy, Vladimir and Veselov, Mark and Kadurin, Artur and Johansson, Simon and  Chen, Hongming and Nikolenko, Sergey and Aspuru-Guzik, Alan and Zhavoronkov, Alex},
  journal={Frontiers in Pharmacology},
  year={2020}
}

pipeline

Dataset

We propose a benchmarking dataset refined from the ZINC database.

The set is based on the ZINC Clean Leads collection. It contains 4,591,276 molecules in total, filtered by molecular weight in the range from 250 to 350 Daltons, a number of rotatable bonds not greater than 7, and XlogP less than or equal to 3.5. We removed molecules containing charged atoms or atoms besides C, N, S, O, F, Cl, Br, H or cycles longer than 8 atoms. The molecules were filtered via medicinal chemistry filters (MCFs) and PAINS filters.

The dataset contains 1,936,962 molecular structures. For experiments, we split the dataset into a training, test and scaffold test sets containing around 1.6M, 176k, and 176k molecules respectively. The scaffold test set contains unique Bemis-Murcko scaffolds that were not present in the training and test sets. We use this set to assess how well the model can generate previously unobserved scaffolds.

Models

Metrics

Besides standard uniqueness and validity metrics, MOSES provides other metrics to access the overall quality of generated molecules. Fragment similarity (Frag) and Scaffold similarity (Scaff) are cosine distances between vectors of fragment or scaffold frequencies correspondingly of the generated and test sets. Nearest neighbor similarity (SNN) is the average similarity of generated molecules to the nearest molecule from the test set. Internal diversity (IntDiv) is an average pairwise similarity of generated molecules. Fréchet ChemNet Distance (FCD) measures the difference in distributions of last layer activations of ChemNet. Novelty is a fraction of unique valid generated molecules not present in the training set.

Model Valid (↑) [email protected] (↑) [email protected] (↑) FCD (↓) SNN (↑) Frag (↑) Scaf (↑) IntDiv (↑) IntDiv2 (↑) Filters (↑) Novelty (↑)
Test TestSF Test TestSF Test TestSF Test TestSF
Train 1.0 1.0 1.0 0.008 0.4755 0.6419 0.5859 1.0 0.9986 0.9907 0.0 0.8567 0.8508 1.0 1.0
HMM 0.076±0.0322 0.623±0.1224 0.5671±0.1424 24.4661±2.5251 25.4312±2.5599 0.3876±0.0107 0.3795±0.0107 0.5754±0.1224 0.5681±0.1218 0.2065±0.0481 0.049±0.018 0.8466±0.0403 0.8104±0.0507 0.9024±0.0489 0.9994±0.001
NGram 0.2376±0.0025 0.974±0.0108 0.9217±0.0019 5.5069±0.1027 6.2306±0.0966 0.5209±0.001 0.4997±0.0005 0.9846±0.0012 0.9815±0.0012 0.5302±0.0163 0.0977±0.0142 0.8738±0.0002 0.8644±0.0002 0.9582±0.001 0.9694±0.001
Combinatorial 1.0±0.0 0.9983±0.0015 0.9909±0.0009 4.2375±0.037 4.5113±0.0274 0.4514±0.0003 0.4388±0.0002 0.9912±0.0004 0.9904±0.0003 0.4445±0.0056 0.0865±0.0027 0.8732±0.0002 0.8666±0.0002 0.9557±0.0018 0.9878±0.0008
CharRNN 0.9748±0.0264 1.0±0.0 0.9994±0.0003 0.0732±0.0247 0.5204±0.0379 0.6015±0.0206 0.5649±0.0142 0.9998±0.0002 0.9983±0.0003 0.9242±0.0058 0.1101±0.0081 0.8562±0.0005 0.8503±0.0005 0.9943±0.0034 0.8419±0.0509
AAE 0.9368±0.0341 1.0±0.0 0.9973±0.002 0.5555±0.2033 1.0572±0.2375 0.6081±0.0043 0.5677±0.0045 0.991±0.0051 0.9905±0.0039 0.9022±0.0375 0.0789±0.009 0.8557±0.0031 0.8499±0.003 0.996±0.0006 0.7931±0.0285
VAE 0.9767±0.0012 1.0±0.0 0.9984±0.0005 0.099±0.0125 0.567±0.0338 0.6257±0.0005 0.5783±0.0008 0.9994±0.0001 0.9984±0.0003 0.9386±0.0021 0.0588±0.0095 0.8558±0.0004 0.8498±0.0004 0.997±0.0002 0.6949±0.0069
JTN-VAE 1.0±0.0 1.0±0.0 0.9996±0.0003 0.3954±0.0234 0.9382±0.0531 0.5477±0.0076 0.5194±0.007 0.9965±0.0003 0.9947±0.0002 0.8964±0.0039 0.1009±0.0105 0.8551±0.0034 0.8493±0.0035 0.976±0.0016 0.9143±0.0058
LatentGAN 0.8966±0.0029 1.0±0.0 0.9968±0.0002 0.2968±0.0087 0.8281±0.0117 0.5371±0.0004 0.5132±0.0002 0.9986±0.0004 0.9972±0.0007 0.8867±0.0009 0.1072±0.0098 0.8565±0.0007 0.8505±0.0006 0.9735±0.0006 0.9498±0.0006

For comparison of molecular properties, we computed the Wasserstein-1 distance between distributions of molecules in the generated and test sets. Below, we provide plots for lipophilicity (logP), Synthetic Accessibility (SA), Quantitative Estimation of Drug-likeness (QED) and molecular weight.

logP SA
logP SA
weight QED
weight QED

Installation

PyPi

The simplest way to install MOSES (models and metrics) is to install RDKit: conda install -yq -c rdkit rdkit and then install MOSES (molsets) from pip (pip install molsets). If you want to use LatentGAN, you should also install additional dependencies using bash install_latentgan_dependencies.sh.

If you are using Ubuntu, you should also install sudo apt-get install libxrender1 libxext6 for RDKit.

Docker

  1. Install docker and nvidia-docker.

  2. Pull an existing image (4.1Gb to download) from DockerHub:

docker pull molecularsets/moses

or clone the repository and build it manually:

git clone https://github.com/molecularsets/moses.git
nvidia-docker image build --tag molecularsets/moses moses/
  1. Create a container:
nvidia-docker run -it --name moses --network="host" --shm-size 10G molecularsets/moses
  1. The dataset and source code are available inside the docker container at /moses:
docker exec -it molecularsets/moses bash

Manually

Alternatively, install dependencies and MOSES manually.

  1. Clone the repository:
git lfs install
git clone https://github.com/molecularsets/moses.git
  1. Install RDKit for metrics calculation.

  2. Install MOSES:

python setup.py install
  1. (Optional) Install dependencies for LatentGAN:
bash install_latentgan_dependencies.sh

Benchmarking your models

  • Install MOSES as described in the previous section.

  • Get train, test and test_scaffolds datasets using the following code:

import moses

train = moses.get_dataset('train')
test = moses.get_dataset('test')
test_scaffolds = moses.get_dataset('test_scaffolds')
  • You can use a standard torch DataLoader in your models. We provide a simple StringDataset class for convenience:
from torch.utils.data import DataLoader
from moses import CharVocab, StringDataset

train = moses.get_dataset('train')
vocab = CharVocab.from_data(train)
train_dataset = StringDataset(vocab, train)
train_dataloader = DataLoader(
    train_dataset, batch_size=512,
    shuffle=True, collate_fn=train_dataset.default_collate
)

for with_bos, with_eos, lengths in train_dataloader:
    ...
  • Calculate metrics from your model's samples. We recomend sampling at least 30,000 molecules:
import moses
metrics = moses.get_all_metrics(list_of_generated_smiles)
  • Add generated samples and metrics to your repository. Run the experiment multiple times to estimate the variance of the metrics.

Reproducing the baselines

End-to-End launch

You can run pretty much everything with:

python scripts/run.py

This will split the dataset, train the models, generate new molecules, and calculate the metrics. Evaluation results will be saved in metrics.csv.

You can specify the GPU device index as cuda:n (or cpu for CPU) and/or model by running:

python scripts/run.py --device cuda:1 --model aae

For more details run python scripts/run.py --help.

You can reproduce evaluation of all models with several seeds by running:

sh scripts/run_all_models.sh

Training

python scripts/train.py <model name> \
       --train_load <train dataset> \
       --model_save <path to model> \
       --config_save <path to config> \
       --vocab_save <path to vocabulary>

To get a list of supported models run python scripts/train.py --help.

For more details of certain model run python scripts/train.py --help .

Generation

python scripts/sample.py <model name> \
       --model_load <path to model> \
       --vocab_load <path to vocabulary> \
       --config_load <path to config> \
       --n_samples <number of samples> \
       --gen_save <path to generated dataset>

To get a list of supported models run python scripts/sample.py --help.

For more details of certain model run python scripts/sample.py --help .

Evaluation

python scripts/eval.py \
       --ref_path <reference dataset> \
       --gen_path <generated dataset>

For more details run python scripts/eval.py --help.

Owner
Neelesh C A
Neelesh C A
Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

TensorFlow implementation of 3D Convolutional Neural Networks for Speaker Verification - Official Project Page - Pytorch Implementation This repositor

Amirsina Torfi 753 Dec 17, 2022
A Pytorch Implementation of a continuously rate adjustable learned image compression framework.

GainedVAE A Pytorch Implementation of a continuously rate adjustable learned image compression framework, Gained Variational Autoencoder(GainedVAE). N

39 Dec 24, 2022
Analysis of Antarctica sequencing samples contaminated with SARS-CoV-2

Analysis of SARS-CoV-2 reads in sequencing of 2018-2019 Antarctica samples in PRJNA692319 The samples analyzed here are described in this preprint, wh

Jesse Bloom 4 Feb 09, 2022
Probabilistic Tensor Decomposition of Neural Population Spiking Activity

Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e

Hugo Soulat 6 Nov 30, 2022
Pytorch implementation of AREL

Status: Archive (code is provided as-is, no updates expected) Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement

8 Nov 25, 2022
Explaining Hyperparameter Optimization via PDPs

Explaining Hyperparameter Optimization via PDPs This repository gives access to an implementation of the methods presented in the paper submission “Ex

2 Nov 16, 2022
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
Robust, modular and efficient implementation of advanced Hamiltonian Monte Carlo algorithms

AdvancedHMC.jl AdvancedHMC.jl provides a robust, modular and efficient implementation of advanced HMC algorithms. An illustrative example for Advanced

The Turing Language 167 Jan 01, 2023
A JAX-based research framework for writing differentiable numerical simulators with arbitrary discretizations

jaxdf - JAX-based Discretization Framework Overview | Example | Installation | Documentation ⚠️ This library is still in development. Breaking changes

UCL Biomedical Ultrasound Group 65 Dec 23, 2022
Code & Experiments for "LILA: Language-Informed Latent Actions" to be presented at the Conference on Robot Learning (CoRL) 2021.

LILA LILA: Language-Informed Latent Actions Code and Experiments for Language-Informed Latent Actions (LILA), for using natural language to guide assi

Sidd Karamcheti 11 Nov 25, 2022
GPT, but made only out of gMLPs

GPT - gMLP This repository will attempt to crack long context autoregressive language modeling (GPT) using variations of gMLPs. Specifically, it will

Phil Wang 80 Dec 01, 2022
Randomizes the warps in a stock pokeemerald repo.

pokeemerald warp randomizer Randomizes the warps in a stock pokeemerald repo. Usage Instructions Install networkx and matplotlib via pip3 or similar.

Max Thomas 6 Mar 17, 2022
This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”

This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?” Usage To replicate our results in Secti

Albert Webson 64 Dec 11, 2022
Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates

Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates Installation Clone the repository: git clone https://github.com/Zengyi-Qi

Zengyi Qin 3 Oct 18, 2022
A Python library for adversarial machine learning focusing on benchmarking adversarial robustness.

ARES This repository contains the code for ARES (Adversarial Robustness Evaluation for Safety), a Python library for adversarial machine learning rese

Tsinghua Machine Learning Group 377 Dec 20, 2022
Fuzzing the Kernel Using Unicornafl and AFL++

Unicorefuzz Fuzzing the Kernel using UnicornAFL and AFL++. For details, skim through the WOOT paper or watch this talk at CCCamp19. Is it any good? ye

Security in Telecommunications 283 Dec 26, 2022
Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification

Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification Usage The required packages are lis

0 Feb 07, 2022
Learning kernels to maximize the power of MMD tests

Code for the paper "Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy" (arXiv:1611.04488; published at ICLR 2017), by Douga

Danica J. Sutherland 201 Dec 17, 2022
Implementation of Fast Transformer in Pytorch

Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install

Phil Wang 167 Dec 27, 2022
DTCN IJCAI - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022