This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”

Overview

This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”

Usage

To replicate our results in Section 4, run:

python3 prompt_tune.py \
    --save-dir ../runs/prompt_tuned_sec4/ \
    --prompt-path ../data/binary_NLI_prompts.csv \
    --experiment-name sec4 \
    --few-shots 3,5,10,20,30,50,100,250 \
    --production \
    --seeds 1

Add --fully-train if you want to train on the entire training set in addition to few-shot settings.

To replicate Section 5, run:

python3 prompt_tune.py \
    --save-dir ../runs/prompt_tuned_sec5/ \
    --prompt-path ../data/binary_NLI_prompts_permuted.csv \
    --experiment-name sec5 \
    --few-shots 3,5,10,20,30,50,100,250 \
    --production \
    --seeds 1

To get a fine-tuning baseline (Figure 1):

python3 fine_tune.py \
    --save-dir ../runs/fine_tune/ \
    --epochs 5 \
    --few-shots 3,5,10,20,30,50,100,250 \
    --fully-train \
    --production \
    --seeds 1

To replicate our exact results, use --seeds 1,2,3,4,5,6,7,8, which yields starting_example_index of 550,231,974,966,1046,2350,1326,928 respectively. This is important for ensuring that all models trained under the same seed always see exactly the same training examples. See paper Section 3 for more details.

If these seeds do not generate the same starting_example_index for you (which you can check in the output CSV files), you will have to manually specify the few-shot subset of training examples. I plan to add an argparse argument for this to make it easy.

All other hyperparameters are the same as the argparse default.

Miscellaneous Notes

You might notice that the code and output files are set up to produce a fine-grained analysis of HANS (McCoy et al., 2019). We actually run all of our main experiments on HANS as well and got similar results, which we plan to write up in a future version of our paper. Meanwhile, if you’re curious, feel free to add --do-diagnosis which will report the results on HANS.

Requirements

Python 3.9.

3.7 should mostly work too. You’d have to just replace the new built-in type hints and dictionary union operators with their older equivalents.

Activate your preferred virtual envrionment and then run pip install -r requirements.txt. If you want to replicate our exact results, use

torch==1.9.0+cu111
transformers==4.9.2
datasets==1.11.0
Owner
Albert Webson
Computer science PhD by day. Philosophy MA by night. Advised by Ellie Pavlick at Brown University.
Albert Webson
FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation

FCN_via_Keras FCN FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This

Kento Watanabe 48 Aug 30, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
The audio-video synchronization of MKV Container Format is exploited to achieve data hiding

The audio-video synchronization of MKV Container Format is exploited to achieve data hiding, where the hidden data can be utilized for various management purposes, including hyper-linking, annotation

Maxim Zaika 1 Nov 17, 2021
Machine-in-the-Loop Rewriting for Creative Image Captioning

Machine-in-the-Loop Rewriting for Creative Image Captioning Data Annotated sources of data used in the paper: Data Source URL Mohammed et al. Link Gor

Vishakh P 6 Jul 24, 2022
A fast model to compute optical flow between two input images.

DCVNet: Dilated Cost Volumes for Fast Optical Flow This repository contains our implementation of the paper: @InProceedings{jiang2021dcvnet, title={

Huaizu Jiang 8 Sep 27, 2021
Static Features Classifier - A static features classifier for Point-Could clusters using an Attention-RNN model

Static Features Classifier This is a static features classifier for Point-Could

ABDALKARIM MOHTASIB 1 Jan 25, 2022
ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin et al., 2020).

ReConsider ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin

Facebook Research 47 Jul 26, 2022
SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking

SPLADE 🍴 + 🥄 = 🔎 This repository contains the weights for four models as well as the code for running inference for our two papers: [v1]: SPLADE: S

NAVER 170 Dec 28, 2022
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network

PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C

Quan Nguyen (Fly) 47 Nov 02, 2022
This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels].

CGPN This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels]. Req

10 Sep 12, 2022
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022
Python wrapper of LSODA (solving ODEs) which can be called from within numba functions.

numbalsoda numbalsoda is a python wrapper to the LSODA method in ODEPACK, which is for solving ordinary differential equation initial value problems.

Nick Wogan 52 Jan 09, 2023
Experiments and code to generate the GINC small-scale in-context learning dataset from "An Explanation for In-context Learning as Implicit Bayesian Inference"

GINC small-scale in-context learning dataset GINC (Generative In-Context learning Dataset) is a small-scale synthetic dataset for studying in-context

P-Lambda 29 Dec 19, 2022
Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems This is our experimental code for RecSys 2021 paper "Learning

11 Jul 28, 2022
Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Learning Domain Invariant Representations in Goal-conditioned Block MDPs Beining Han, Chongyi Zheng, Harris Chan, Keiran Paster, Michael R. Zhang, Jim

Chongyi Zheng 3 Apr 12, 2022
Implementation of Artificial Neural Network Algorithm

Artificial Neural Network This repository contain implementation of Artificial Neural Network Algorithm in several programming languanges and framewor

Resha Dwika Hefni Al-Fahsi 1 Sep 14, 2022
This repository contains the implementation of the paper: "Towards Frequency-Based Explanation for Robust CNN"

RobustFreqCNN About This repository contains the implementation of the paper "Towards Frequency-Based Explanation for Robust CNN" arxiv. It primarly d

Sarosij Bose 2 Jan 23, 2022
GUI for TOAD-GAN, a PCG-ML algorithm for Token-based Super Mario Bros. Levels.

If you are using this code in your own project, please cite our paper: @inproceedings{awiszus2020toadgan, title={TOAD-GAN: Coherent Style Level Gene

Maren A. 13 Dec 14, 2022
Simulating an AI playing 2048 using the Expectimax algorithm

2048-expectimax Simulating an AI playing 2048 using the Expectimax algorithm The base game engine uses code from here. The AI player is modeled as a m

Subha Ramesh 2 Jan 31, 2022
A pre-trained language model for social media text in Spanish

RoBERTuito A pre-trained language model for social media text in Spanish READ THE FULL PAPER Github Repository RoBERTuito is a pre-trained language mo

25 Dec 29, 2022