Official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset.

Overview

Physion: Evaluating Physical Prediction from Vision in Humans and Machines [paper]

Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Yu Fish Tung, R.T. Pramod, Cameron Holdaway, Sirui Tao, Kevin Smith, Fan-Yun Sun, Li Fei-Fei, Nancy Kanwisher, Joshua B. Tenenbaum, Daniel L.K. Yamins, Judith E. Fan

This is the official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset. The code is built based on the original implementation of DPI-Net (https://github.com/YunzhuLi/DPI-Net).

Contact: [email protected] (Fish Tung)

Papers of GNS and DPI-Net:

** Learning to Simulate Complex Physics with Graph Networks ** [paper]

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, Peter W. Battaglia

** Learning Particle Dynamics for Manipulating Rigid Bodies, Deformable Objects, and Fluids ** [website] [paper]

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B. Tenenbaum, Antonio Torralba **

Demo

Rollout from our learned model (left is ground truth, right is prediction)

Dominoes Roll Contain Drape

Installation

Clone this repo:

git clone https://github.com/htung0101/DPI-Net-p.git
cd DPI-Net-p
git submodule update --init --recursive

Install Dependencies if using Conda

For Conda users, we provide an installation script:

bash ./scripts/conda_deps.sh
pip install pyyaml

To use tensorboard for training visualization

pip install tensorboardX
pip install tensorboard

Install binvox

We use binvox to transform object mesh into particles. To use binvox, please download binvox from https://www.patrickmin.com/binvox/, put it under ./bin, and include it in your path with

export PATH=$PATH:$PWD/bin.

You might need to do chmod 777 binvox in order to execute the file.

Setup your own data path

open paths.yaml and write your own path there. You can set up different paths for different machines under different user name.

Preprocessing the Physion dataset

1) We need to convert the mesh scenes into particle scenes. This line will generate a separate folder (dpi_data_dir specified in paths.yaml) that holds data for the particle-based models

bash run_preprocessing_tdw_cheap.sh [SCENARIO_NAME] [MODE]

e.g., bash run_preprocessing_tdw_cheap.sh Dominoes train SCENARIO_NAME can be one of the following: Dominoes, Collide, Support, Link, Contain, Roll, Drop, or Drape. MODE can be either train or test

You can visualize the original videos and the generated particle scenes with

python preprocessing_tdw_cheap.py --scenario Dominones --mode "train" --visualization 1

There will be videos generated under the folder vispy.

2) Then, try generate a train.txt and valid.txt files that indicates the trials you want to use for training and validaiton.

python create_train_valid.py

You can also design your specific split. Just put the trial names into one txt file.

3) For evalution on the red-hits-yellow prediciton, we can get the binary red-hits-yellow label txt file from the test dataset with

bash run_get_label_txt.sh [SCENARIO_NAME] test

This will generate a folder called labels under your output_folder dpi_data_dir. In the folder, each scenario will have a corresponding label file called [SCENARIO_NAME].txt

Training

Ok, now we are ready to start training the models.You can use the following command to train from scratch.

  • Train GNS
    bash scripts/train_gns.sh [SCENARIO_NAME] [GPU_ID]

SCENARIO_NAME can be one of the following: Dominoes, Collide, Support, Link, Contain, Roll, Drop and Drape.

  • Train DPI
    bash scripts/train_dpi.sh [SCENARIO_NAME] [GPU_ID]

Our implementation is different from the original DPI paper in 2 ways: (1) our model takes as inputs relative positions as opposed to absolute positions, (2) our model is trained with injected noise. These two features are suggested in the GNS paper, and we found them to be critcial for the models to generalize well to unseen scenes.

  • Train with multiple scenarios

You can also train with more than one scenarios by adding different scenario to the argument dataf

 python train.py  --env TDWdominoes --model_name GNS --log_per_iter 1000 --training_fpt 3 --ckp_per_iter 5000 --floor_cheat 1  --dataf "Dominoes, Collide, Support, Link, Roll, Drop, Contain, Drape" --outf "all_gns"
  • Visualize your training progress

Models and model logs are saved under [out_dir]/dump/dump_TDWdominoes. You can visualize the training progress using tensorboard

tensorboard --logdir MODEL_NAME/log

Evaluation

  • Evaluate GNS
bash scripts/eval_gns.sh [TRAIN_SCENARIO_NAME] [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]

You can get the prediction txt file under eval/eval_TDWdominoes/[MODEL_NAME], e.g., test-Drape.txt, which contains results of testing the model on the Drape scenario. You can visualize the results with additional argument --vis 1.

  • Evaluate GNS-Ransac
bash scripts/eval_gns_ransac.sh [TRAIN_SCENARIO_NAME] [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]
  • Evaluate DPI
bash scripts/eval_dpi.sh [TRAIN_SCENARIO_NAME] [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]
  • Evaluate Models trained on multiple scenario Here we provide some example of evaluating on arbitray models trained on all scenarios.
bash eval_all_gns.sh [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]
bash eval_all_dpi.sh [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]
bash eval_all_gns_ransac.sh [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]
  • Visualize trained Models Here we provide an example of visualizing the rollout results from trained arbitray models.
bash vis_gns.sh [EPOCH] [ITER] [Test SCENARIO_NAME] [GPU_ID]

You can find the visualization under eval/eval_TDWdominoes/[MODEL_NAME]/test-[Scenario]. We should see a gif for the original RGB videos, and another gif for the side-by-side comparison of gt particle scenes and the predicted particle scenes.

Citing Physion

If you find this codebase useful in your research, please consider citing:

@inproceedings{bear2021physion,
    Title={Physion: Evaluating Physical Prediction from Vision in Humans and Machines},
    author= {Daniel M. Bear and
           Elias Wang and
           Damian Mrowca and
           Felix J. Binder and
           Hsiao{-}Yu Fish Tung and
           R. T. Pramod and
           Cameron Holdaway and
           Sirui Tao and
           Kevin A. Smith and
           Fan{-}Yun Sun and
           Li Fei{-}Fei and
           Nancy Kanwisher and
           Joshua B. Tenenbaum and
           Daniel L. K. Yamins and
           Judith E. Fan},
    url = {https://arxiv.org/abs/2106.08261},
    archivePrefix = {arXiv},
    eprint = {2106.08261},
    Year = {2021}
}
Owner
Hsiao-Yu Fish Tung
Postdoc at MIT CoCosci Lab and Stanford NeuroAILab. PhD at CMU MLD
Hsiao-Yu Fish Tung
Unsupervised clustering of high content screen samples

Microscopium Unsupervised clustering and dataset exploration for high content screens. See microscopium in action Public dataset BBBC021 from the Broa

60 Dec 05, 2022
Fuzzer for Linux Kernel Drivers

difuze: Fuzzer for Linux Kernel Drivers This repo contains all the sources (including setup scripts), you need to get difuze up and running. Tested on

seclab 344 Dec 27, 2022
Unofficial PyTorch Implementation of Multi-Singer

Multi-Singer Unofficial PyTorch Implementation of Multi-Singer: Fast Multi-Singer Singing Voice Vocoder With A Large-Scale Corpus. Requirements See re

SunMail-hub 123 Dec 28, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
A Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images.

Lobe This is a Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images. This component lets you easily use an exported m

Kendell R 4 Feb 28, 2022
PAWS 🐾 Predicting View-Assignments with Support Samples

This repo provides a PyTorch implementation of PAWS (predicting view assignments with support samples), as described in the paper Semi-Supervised Learning of Visual Features by Non-Parametrically Pre

Facebook Research 437 Dec 23, 2022
For visualizing the dair-v2x-i dataset

3D Detection & Tracking Viewer The project is based on hailanyi/3D-Detection-Tracking-Viewer and is modified, you can find the original version of the

34 Dec 29, 2022
Repositório da disciplina de APC, no segundo semestre de 2021

NOTAS FINAIS: https://github.com/fabiommendes/apc2018/blob/master/nota-final.pdf Algoritmos e Programação de Computadores Este é o Git da disciplina A

16 Dec 16, 2022
Image-generation-baseline - MUGE Text To Image Generation Baseline

MUGE Text To Image Generation Baseline Requirements and Installation More detail

23 Oct 17, 2022
Sharpness-Aware Minimization for Efficiently Improving Generalization

Sharpness-Aware-Minimization-TensorFlow This repository provides a minimal implementation of sharpness-aware minimization (SAM) (Sharpness-Aware Minim

Sayak Paul 54 Dec 08, 2022
DziriBERT: a Pre-trained Language Model for the Algerian Dialect

DziriBERT DziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect. It handles Algerian

117 Jan 07, 2023
*ObjDetApp* deploys a pytorch model for object detection

*ObjDetApp* deploys a pytorch model for object detection

Will Chao 1 Dec 26, 2021
Implementation of Monocular Direct Sparse Localization in a Prior 3D Surfel Map (DSL)

DSL Project page: https://sites.google.com/view/dsl-ram-lab/ Monocular Direct Sparse Localization in a Prior 3D Surfel Map Authors: Haoyang Ye, Huaiya

Haoyang Ye 93 Nov 30, 2022
Code release for "Masked-attention Mask Transformer for Universal Image Segmentation"

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Ro

Meta Research 1.2k Jan 02, 2023
BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalanced Tongue Data

Balanced-Evolutionary-Semi-Stacking Code for the paper ''BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalan

0 Jan 16, 2022
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi

Qunjie Zhou 199 Nov 29, 2022
ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

ViViT is a collection of numerical tricks to efficiently access curvature from the generalized Gauss-Newton (GGN) matrix based on its low-rank structure. Provided functionality includes computing

Felix Dangel 12 Dec 08, 2022
On the Adversarial Robustness of Visual Transformer

On the Adversarial Robustness of Visual Transformer Code for our paper "On the Adversarial Robustness of Visual Transformers"

Rulin Shao 35 Dec 14, 2022
Code of the lileonardo team for the 2021 Emotion and Theme Recognition in Music task of MediaEval 2021

Emotion and Theme Recognition in Music The repository contains code for the submission of the lileonardo team to the 2021 Emotion and Theme Recognitio

Vincent Bour 8 Aug 02, 2022
Dynamic Head: Unifying Object Detection Heads with Attentions

Dynamic Head: Unifying Object Detection Heads with Attentions dyhead_video.mp4 This is the official implementation of CVPR 2021 paper "Dynamic Head: U

Microsoft 550 Dec 21, 2022