Public Code for NIPS submission SimiGrad: Fine-Grained Adaptive Batching for Large ScaleTraining using Gradient Similarity Measurement

Related tags

Deep LearningSimiGrad
Overview

Public code for NIPS submission "SimiGrad: Fine-Grained Adaptive Batching for Large Scale Training using Gradient Similarity Measurement"

This repo contains both our SimiGrad framework (integrated with DeepSpeed) and all training codes used to generate the results in the paper.

Installation

Please use ./DeepSpeed/install.sh to install our SimiGrad framework. For detailed installation options please see ./DeepSpeed/install.sh . It is recommended that you use a virtual environment to install SimiGrad.

Usage

To use SimiGrad, simply add an additional parameter adaptive_batch_params when initializing DeepSpeed. For example,

model, optimizer, _, _ = deepspeed.initialize(
        args=...,
        model=...,
        model_parameters=...,
        adaptive_batch_params={
            "enable_adjust": args.similarity_target, # bool, set to `True` to use adaptive batch size and `False` for fixed batch size
            "verbose": True, # bool, set to `True` to print details of batch size adjustment
            "similarity_target":args.similarity_target, # float, -1.0~1.0, the similarity target that controls how aggressive the batch size adjustment is.
            "batch_size_lower_bound":args.batchsize_lower_bound, # int, optional, the lower bound of batch size. Recommended only if you have a well-tuned warmup learning rate scheduling.
            "batch_size_upper_bound":args.batchsize_upper_bound, # int, optional, the upper bound of batch size.
            "max_micro_batch_size":args.max_micro_batch_size, # int, optional, the upper bound of micro batch size to prevent out-of-memory error. If unspecified, the initial micro batch size will be used as the max_micro_batch_size.})

Please refer to our code (e.g. DeepSpeedExamples/pytorch-cifar/main.py) for details such as how to read the metrics from the framework.

For usage of DeepSpeed, please refer to their website https://www.deepspeed.ai/

Reproduce Paper's Results

The parameters we used to get the claimed results are included in the paper.

BERT Large Pretrain

All scripts can be found in DeepSpeedExamples/bert_pretrain/. Please use the script ds_train_bert_bsz64k_seq128.sh for BERT Large pretrain with sequence length 128 (epoch 1-150). You need to specify the parameters like similarity_target and also the location of the WikiandBookCorpus dataset in the script.

After the sequence length 128 pretrain, use ds_train_bert_bsz32k_seq512.sh to finish the sequence length 512 part of pretrain (epoch 151-170). You need to specify the checkpoint from sequence length 128 pretrain for the sequence length 512 to start with. Then the BERT Large model is ready for downstream tasks.

SQuAD Score from BERT Large Pretrain

After the BERT pretrain, use DeepSpeedExamples/BingBertSquad/run_squad_deepspeed.sh to get the SQuAD 1.1 score. You need to specify the checkpoint from sequence length 512 pretrain and the location of SQuAD 1.1 dataset.

ResNet18 on CIFAR10

All scripts can be found in DeepSpeedExamples/pytorch-cifar/. Use the script run.sh to train ResNet18 with specific parameters. Use the grid_search.py and baseline_grid_search.py to get the Pareto results of test acc vs. batch size in the paper.

ResNet50 on ImageNet

All scripts can be found in DeepSpeedExamples/imagenet_deepspeed/. Use the script run_with2kmin.sh to train ResNet50 with spcific parameters.

Future of SimiGrad

SimiGrad will be officially integrated as part of DeepSpeed soon!

Owner
Heyang Qin
Heyang Qin
On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Zemin Liu 4 Jun 18, 2022
PyTorch implementation of Munchausen Reinforcement Learning based on DQN and SAC. Handles discrete and continuous action spaces

Exploring Munchausen Reinforcement Learning This is the project repository of my team in the "Advanced Deep Learning for Robotics" course at TUM. Our

Mohamed Amine Ketata 10 Mar 10, 2022
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)

ELD The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) v

Kaixuan Wei 359 Jan 01, 2023
Bot developed in Python that automates races in pegaxy.

español | português About it: This is a fork from pega-racing-bot. This bot, developed in Python, is to automate races in pegaxy. The game developers

4 Apr 08, 2022
Balancing Principle for Unsupervised Domain Adaptation

Blancing Principle for Domain Adaptation NeurIPS 2021 Paper Abstract We address the unsolved algorithm design problem of choosing a justified regulari

Marius-Constantin Dinu 4 Dec 15, 2022
Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionaries

Dictionary Learning for Clustering on Hyperspectral Images Overview Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionari

Joshua Bruton 6 Oct 25, 2022
[ICCV 2021] Official PyTorch implementation for Deep Relational Metric Learning.

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

Borui Zhang 39 Dec 10, 2022
Fake News Detection Using Machine Learning Methods

Fake-News-Detection-Using-Machine-Learning-Methods Fake news is always a real and dangerous issue. However, with the presence and abundance of various

Achraf Safsafi 1 Jan 11, 2022
Edison AT is software Depression Assistant personal.

Edison AT Edison AT is software / program Depression Assistant personal. Feature: Analyze emotional real-time from face. Audio Edison(Comingsoon relea

Ananda Rauf 2 Apr 24, 2022
Simple machine learning library / 簡單易用的機器學習套件

FukuML Simple machine learning library / 簡單易用的機器學習套件 Installation $ pip install FukuML Tutorial Lesson 1: Perceptron Binary Classification Learning Al

Fukuball Lin 279 Sep 15, 2022
Towards Representation Learning for Atmospheric Dynamics (AtmoDist)

Towards Representation Learning for Atmospheric Dynamics (AtmoDist) The prediction of future climate scenarios under anthropogenic forcing is critical

Sebastian Hoffmann 4 Dec 15, 2022
Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs

Realistic Full-Body Anonymization with Surface-Guided GANs This is the official

Håkon Hukkelås 30 Nov 18, 2022
Vrcwatch - Supply the local time to VRChat as Avatar Parameters through OSC

English: README-EN.md VRCWatch VRCWatch は、VRChat 内のアバター向けに現在時刻を送信するためのプログラムです。 使

Kosaki Mezumona 17 Nov 30, 2022
Implementation of "Learning Multi-Granular Hypergraphs for Video-Based Person Re-Identification"

hypergraph_reid Implementation of "Learning Multi-Granular Hypergraphs for Video-Based Person Re-Identification" If you find this help your research,

62 Dec 21, 2022
[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p

Yu Meng 60 Dec 30, 2022
object recognition with machine learning on Respberry pi

Respberrypi_object-recognition object recognition with machine learning on Respberry pi line.py 建立一支與樹梅派連線的 linebot 使用此 linebot 遠端控制樹梅派拍照 config.ini l

1 Dec 11, 2021
smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectious disease models: the COVID-19 case by Storvik et al

smc.covid smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectiou

0 Oct 15, 2021
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023
Official Implementation of Few-shot Visual Relationship Co-localization

VRC Official implementation of the Few-shot Visual Relationship Co-localization (ICCV 2021) paper project page | paper Requirements Use python = 3.8.

22 Oct 13, 2022
Repositório da disciplina de APC, no segundo semestre de 2021

NOTAS FINAIS: https://github.com/fabiommendes/apc2018/blob/master/nota-final.pdf Algoritmos e Programação de Computadores Este é o Git da disciplina A

16 Dec 16, 2022