The official PyTorch implementation for the paper "sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs".

Overview

Magnetic Graph Convolutional Networks

The Magnetic Eigenmap

A directed 4-cycle

About

The official PyTorch implementation for the paper sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs.

Requirements

To install requirements:

pip3 install -r requirements.txt

Results

Node classification accuracy in Citation networks (%)

Model CoRA CiteSeer PubMed
GAT 82.60 ± 0.40 70.45 ± 0.25 77.45 ± 0.45
sMGC 82.70 ± 0.00 73.30 ± 0.00 79.90 ± 0.10
MGC 82.50 ± 1.00 71.25 ± 0.95 79.70 ± 0.40

Node classification accuracy in WebKB (%)

Model Cornell Texas Washington Wisconsin
GAT 41.03 ± 0.00 52.63 ± 2.63 63.04 ± 0.00 56.61 ± 1.88
sMGC 73.08 ± 1.28 71.05 ± 0.00 68.48 ± 3.26 80.19 ± 2.83
MGC 80.77 ± 3.85 82.90 ± 1.31 70.66 ± 1.08 87.74 ± 2.83

Reproduce experiment results

sMGC

CoRA:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/cora.ini' --alpha=0.03 --t=8.05 --K=38

CiteSeer:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/citeseer.ini' --alpha=0.01 --t=5.16 --K=40

PubMed:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/pubmed.ini' --alpha=0.01 --t=5.95 --K=25

Cornell:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/cornell.ini' --alpha=0.95 --t=45.32 --K=12

Texas:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/texas.ini' --alpha=0.71 --t=45.08 --K=23

Washington:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/washington.ini' --alpha=0.77 --t=45.95 --K=44

Wisconsin:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/wisconsin.ini' --alpha=0.93 --t=25.76 --K=34

MGC

CoRA:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/cora.ini' --alpha=0.08 --t=5.85 --K=10 --droprate=0.4

CiteSeer:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/citeseer.ini' --alpha=0.01 --t=25.95 --K=35 --droprate=0.3

PubMed:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/pubmed.ini' --alpha=0.03 --t=15.95 --K=20 --droprate=0.5

Cornell:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/cornell.ini' --alpha=0.66 --t=38.49 --K=31 --droprate=0.6

Texas:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/texas.ini' --alpha=0.75 --t=0.53 --K=4 --droprate=0.5

Washington:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/washington.ini' --alpha=0.73 --t=42.36 --K=21 --droprate=0.1

Wisconsin:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/wisconsin.ini' --alpha=0.34 --t=0.52 --K=12 --droprate=0.5
Owner
What we know is a drop. What we do not know is an ocean.
An implementation of EWC with PyTorch

EWC.pytorch An implementation of Elastic Weight Consolidation (EWC), proposed in James Kirkpatrick et al. Overcoming catastrophic forgetting in neural

Ryuichiro Hataya 166 Dec 22, 2022
Segmentation models with pretrained backbones. Keras and TensorFlow Keras.

Python library with Neural Networks for Image Segmentation based on Keras and TensorFlow. The main features of this library are: High level API (just

Pavel Yakubovskiy 4.2k Jan 09, 2023
Deep Watershed Transform for Instance Segmentation

Deep Watershed Transform Performs instance level segmentation detailed in the following paper: Min Bai and Raquel Urtasun, Deep Watershed Transformati

193 Nov 20, 2022
Point Cloud Registration using Representative Overlapping Points.

Point Cloud Registration using Representative Overlapping Points (ROPNet) Abstract 3D point cloud registration is a fundamental task in robotics and c

ZhuLifa 36 Dec 16, 2022
Implementation of the final project of the course DDA6309 Probabilistic Graphical Model

Task-aware Joint CWS and POS (TCwsPos) This is the implementation of the final project of the course DDA6309 Probabilistic Graphical Models, The Chine

Peng 1 Dec 26, 2021
A blender add-on that automatically re-aligns wrong axis objects.

Auto Align A blender add-on that automatically re-aligns wrong axis objects. Usage There are three options available in the 3D Viewport Sidebar It

29 Nov 25, 2022
Editing a classifier by rewriting its prediction rules

This repository contains the code and data for our paper: Editing a classifier by rewriting its prediction rules Shibani Santurkar*, Dimitris Tsipras*

Madry Lab 86 Dec 27, 2022
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: "NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion". NÜWA is a unified multimodal

Microsoft 2.6k Jan 03, 2023
Vehicle detection using machine learning and computer vision techniques for Udacity's Self-Driving Car Engineer Nanodegree.

Vehicle Detection Video demo Overview Vehicle detection using these machine learning and computer vision techniques. Linear SVM HOG(Histogram of Orien

hata 1.1k Dec 18, 2022
Send text to girlfriend in the morning

Girlfriend Text Send text to girlfriend (or really anyone with a phone number) in the morning 1. Configure your settings in utils.py. phone_number = "

Paras Adhikary 199 Oct 25, 2022
Source code for deep symbolic optimization.

Update July 10, 2021: This repository now supports an additional symbolic optimization task: learning symbolic policies for reinforcement learning. Th

Brenden Petersen 290 Dec 25, 2022
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.

CSE-Autoloss Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models

Peidong Liu(刘沛东) 54 Dec 17, 2022
Realtime YOLO Monster Detection With Non Maximum Supression

Realtime-YOLO-Monster-Detection-With-Non-Maximum-Supression Table of Contents In

5 Oct 07, 2022
Research on Event Accumulator Settings for Event-Based SLAM

Research on Event Accumulator Settings for Event-Based SLAM This is the source code for paper "Research on Event Accumulator Settings for Event-Based

Robin Shaun 26 Dec 21, 2022
Blind visual quality assessment on 360° Video based on progressive learning

Blind visual quality assessment on omnidirectional or 360 video (ProVQA) Blind VQA for 360° Video via Progressively Learning from Pixels, Frames and V

5 Jan 06, 2023
CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes

CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes. CHERRY is based on a deep learning model, which consists of a graph convolutional encoder and a link

Kenneth Shang 12 Dec 15, 2022
NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation (ACL-IJCNLP 2021)

NeuralWOZ This code is official implementation of "NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation". Sungdong Kim, Mi

NAVER AI 31 Oct 25, 2022
HTSeq is a Python library to facilitate processing and analysis of data from high-throughput sequencing (HTS) experiments.

HTSeq DEVS: https://github.com/htseq/htseq DOCS: https://htseq.readthedocs.io A Python library to facilitate programmatic analysis of data from high-t

HTSeq 57 Dec 20, 2022
An open framework for Federated Learning.

Welcome to Intel® Open Federated Learning Federated learning is a distributed machine learning approach that enables organizations to collaborate on m

Intel Corporation 397 Dec 27, 2022