Vehicle direction identification consists of three module detection , tracking and direction recognization.

Overview

Vehicle-direction-identification

Vehicle direction identification consists of three module detection , tracking and direction recognization.

Algorithm used : Yolo algorithm for detection + SORT algorithm to track vehicles + vector based direction detection

Backend : opencv and python

Library required:

  • opencv = '4.5.4-dev'
  • scipy = '1.4.1'
  • filterpy
  • lap
  • scikit-image

IMPORTANT:

  • I hadn't uploaded model weights and configuration files (which were used for object detection) here because those were already available in yolo_detection repo
  • download yolo tiny weights , config file and coco.names file from here : [https://github.com/hasit73/yolo_detection]
  • For detection i was using same code which was available in yolo_detection repo.

Quick Overview about structure

1) main.py

  • Loading model and user configurations
  • perform io interfacing tasks

2) yolo.py

  • use opencv modules to detect objects from user given media(photo/video)
  • detection take place inside this file

3) config.json

  • user configuration are mentioned inside this file
  • for examples : input shapes and model parameters(weights file path , config file path etc) are added in config.json

4) tracker.py

  • it have one Tracker class that will be used to track vehicles.

5) sort.py

  • SORT algorithm implementations
  • Kalman filter operations

6) vehicle_direction.py

  • Vector based direction recognization

How to use

  1. clone this directory

  2. use following command to run detection and tracking on your custom video

python main.py -c config.json -v 
   

   

Example:

python main.py -c config.json -v car1.mp4
  • Note : Before executing this command make sure that you have downloaded model weights and config file for yolo object detection.

Results

  • output
demo.mp4

Limitations:

There are few primary drawbacks of this appoach

  1. direction recogization totally depends on detection and tracking.

  2. if camera properly arranged then it gives accurate results (Suppose any object is in front of camera and come forward towards camera then it gives bad results) but if you try to use this approach in cctv suviellence then it gives satisfactory results.

  3. in few cases , it performs bad, because right now it works on only single keypoint (center of object) we can improve its performace by detecting multiple keypoints and use majority votes result.

If it's helful for you then please give star :)

[ICCV-2021] An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation

An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation (ICCV 2021) Introduction This is an official pytorch implemen

rongchangxie 42 Jan 04, 2023
Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images.

cppn-gan-vae tensorflow Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Aut

hardmaru 343 Dec 29, 2022
PyTorch code for the paper "FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras"

FIERY This is the PyTorch implementation for inference and training of the future prediction bird's-eye view network as described in: FIERY: Future In

Wayve 406 Dec 24, 2022
FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

HKBU High Performance Machine Learning Lab 6 Nov 18, 2022
MicRank is a Learning to Rank neural channel selection framework where a DNN is trained to rank microphone channels.

MicRank: Learning to Rank Microphones for Distant Speech Recognition Application Scenario Many applications nowadays envision the presence of multiple

Samuele Cornell 20 Nov 10, 2022
[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie

58 Dec 23, 2022
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr

Janghoon Han 83 Dec 20, 2022
This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes.

Polygon-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes. Section I. Description The codes a

xinzelee 226 Jan 05, 2023
PROJECT - Az Residential Real Estate Analysis

AZ RESIDENTIAL REAL ESTATE ANALYSIS -Decided on libraries to import. Includes pa

2 Jul 05, 2022
A Python script that creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.

Text to Subtitles - Python This python file creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editin

Dmytro North 9 Dec 24, 2022
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

ASAPP Research 49 Oct 09, 2022
[BMVC 2021] Official PyTorch Implementation of Self-supervised learning of Image Scale and Orientation Estimation

Self-Supervised Learning of Image Scale and Orientation Estimation (BMVC 2021) This is the official implementation of the paper "Self-Supervised Learn

Jongmin Lee 17 Nov 10, 2022
My course projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU)

ML2021Spring There are my projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU) Course Web : https://speech.ee.

Ding-Li Chen 15 Aug 29, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
Python wrapper to access the amazon selling partner API

PYTHON-AMAZON-SP-API Amazon Selling-Partner API If you have questions, please join on slack Contributions very welcome! Installation pip install pytho

Michael Primke 330 Jan 06, 2023
Kaggleship: Kaggle Notebooks

Kaggleship: Kaggle Notebooks This repository contains my Kaggle notebooks. They are generally about data science, machine learning, and deep learning.

Erfan Sobhaei 1 Jan 25, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
A toolkit for Lagrangian-based constrained optimization in Pytorch

Cooper About Cooper is a toolkit for Lagrangian-based constrained optimization in Pytorch. This library aims to encourage and facilitate the study of

Cooper 34 Jan 01, 2023
A PyTorch implementation of "Graph Wavelet Neural Network" (ICLR 2019)

Graph Wavelet Neural Network ⠀⠀ A PyTorch implementation of Graph Wavelet Neural Network (ICLR 2019). Abstract We present graph wavelet neural network

Benedek Rozemberczki 490 Dec 16, 2022
ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation

ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation (Accepted by BMVC'21) Abstract: Images acquir

10 Dec 08, 2022