Deep Learning Algorithms for Hedging with Frictions

Overview

Deep Learning Algorithms for Hedging with Frictions

This repository contains the Forward-Backward Stochastic Differential Equation (FBSDE) solver and the Deep Hedging, as described in reference [2]. Both of them are implemented in PyTorch.

Basic Setup

The special case with following assumptions is considered:

  • the dynamic of the market satisfies that return and voalatility are constant;
  • the cost parameter is constant;
  • the endowment volatility is in the form of where is constant;
  • the frictionless strategy satisfies that and

On top of that, we consider two calibrated models: a quadratic transaction cost models, and a power cost model with elastic parameter of 3/2. In both experiments, the FBSDE solver and the Deep Hedging are implemented, as well as the asymptotic formula from Theorem 3.6 in reference [2].

For the case of quadratic costs, the ground truth from equation (3.7) in reference [2] is also compared. See Script/sample_code_quadratic_cost.py for details.

For the case of 3/2 power costs, the ground truth is no longer available in closed form. Meanwhile, in regard to the asymptotic formula g(x) in equation (3.8) in reference [2], the numerical solution by SciPy is not stable, thus it is solved via MATHEMATICA (see Script/power_cost_ODE.nb). Consequently, the value of g(x) corresponding to x ranging from 0 to 50 by 0.0001, is stored in table Data/EVA.txt. Benefitted from the oddness and the growth conditions (equation (3.9) in reference [2]), the value of g(x) on is obatinable. Following that, the numerical result of the asymptotic solution is compared with two machine learning methods. See Script/sample_code_power_cost.py for details.

The general variables and the market parameters in the code are summarized below:

Variable Meaning
q power of the trading cost, q
S_OUTSTANDING total shares in the market, s
TIME trading horizon, T
TIME_STEP time discretization, N
DT
GAMMA risk aversion,
XI_1 endowment volatility parameter,
PHI_INITIAL initial holding,
ALPHA market volatility,
MU_BAR market return,
LAM trading cost parameter,
test_samples number of test sample path, batch_size

FBSDE solver

For the detailed implementation of the FBSDE solver, see Script/sample_code_FBSDE.py;
The core dynamic is defined in the method System.forward(), and the key variables in the code are summarized below:

Variable Meaning
time_step time discretization, N
n_samples number of sample path, batch_size
dW_t iid normally distributed random variables with mean zero and variance ,
W_t Brownian motion at time t,
XI_t Brownian motion at time t,
sigma_t vector of 0
sigmaxi_t vector of 1
X_t vector of 1
Y_t vector of 0
Lam_t 1
in_t input of the neural network
sigmaZ_t output of the neural network ,
Delta_t difference between the frictional and frictionless positions (the forward component) divided by the endowment parameter,
Z_t the backward component,

Deep Hedging

For the detailed implementation of the Deep Hedging, see Script/sample_code_Deep_Hedging.py;
The core dynamic of the Deep Hedging is defined in the function TRAIN_Utility(), and the key variables in the code are summarized below:

Variable Meaning
time_step time discretization, N
n_samples number of sample path, batch_size
PHI_0_on_s initial holding divided by the total shares in the market,
W collection of the Brownian motion, throughout the trading horizon,
XI_W_on_s collection of the endowment volatility divided by the total shares in the market, throughout the trading horizon,
PHI_on_s collection of the frictional positions divided by the total shares in the market, throughout the trading horizon,
PHI_dot_on_s collection of the frictional trading rate divided by the total shares in the market, throughout the trading horizon,
loss_Utility minus goal function,

Example

Here we proivde an example for the quadratic cost case (q=2) with the trading horizon of 21 days (TIME=21).

The trading horizon is discretized in 168 time steps (TIME_STEP=168). The parameters are taken from the calibration in [1]:

Parameter Value Code
agent risk aversion GAMMA=1.66*1e-13
total shares outstanding S_OUTSTANDING=2.46*1e11
stock volatility ALPHA=1.88
stock return MU_BAR=0.5*GAMMA*ALPHA**2
endowment volatility parameter XI_1=2.19*1e10
trading cost parameter LAM=1.08*1e-10

And these lead to the optimal trading rate (left panel) and the optimal position (right panel) illustrated below, leanrt by the FBSDE solver and the Deep Hedging, as well as the ground truth and the Leading-order solution based on the asymptotic formula:

TR=21_q=2
With the same simulation with test batch size of 3000 (test_samples=3000), the expectation and the standard deviation of the goal function and the mean square error of the terminal trading rate are calculated, as summarized below:

Method
FBSDE
Deep Q-learning
Leading Order Approximation
Ground Truth

See more examples and discussion in Section 4 of paper [2].

Acknowledgments

Reference

[1] Asset Pricing with General Transaction Costs: Theory and Numerics, L. Gonon, J. Muhle-Karbe, X. Shi. [Mathematical Finance], 2021.

[2] Deep Learning Algorithms for Hedging with Frictions, X. Shi, D. Xu, Z. Zhang. [arXiv], 2021.

Owner
Xiaofei Shi
Xiaofei Shi
Large scale and asynchronous Hyperparameter Optimization at your fingertip.

Syne Tune This package provides state-of-the-art distributed hyperparameter optimizers (HPO) where trials can be evaluated with several backend option

Amazon Web Services - Labs 236 Jan 01, 2023
This repository contains small projects related to Neural Networks and Deep Learning in general.

ILearnDeepLearning.py Description People say that nothing develops and teaches you like getting your hands dirty. This repository contains small proje

Piotr Skalski 1.2k Dec 22, 2022
tensorflow implementation of 'YOLO : Real-Time Object Detection'

YOLO_tensorflow (Version 0.3, Last updated :2017.02.21) 1.Introduction This is tensorflow implementation of the YOLO:Real-Time Object Detection It can

Jinyoung Choi 1.7k Nov 21, 2022
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

86 Oct 05, 2022
Accelerated deep learning R&D

Accelerated deep learning R&D PyTorch framework for Deep Learning research and development. It focuses on reproducibility, rapid experimentation, and

Catalyst-Team 3.1k Jan 06, 2023
Bianace Prediction Pytorch Model

Bianace Prediction Pytorch Model Main Results ETHUSDT from 2021-01-01 00:00:00 t

RoyYang 4 Jul 20, 2022
Its a Plant Leaf Disease Detection System based on Machine Learning.

My_Project_Code Its a Plant Leaf Disease Detection System based on Machine Learning. I have used Tomato Leaves Dataset from kaggle. This system detect

Sanskriti Sidola 3 Jun 15, 2022
This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Skin Lesion detection using YOLO This project deal

Lalith Veerabhadrappa Badiger 1 Nov 22, 2021
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
pybaum provides tools to work with pytrees which is a concept burrowed from JAX.

pybaum provides tools to work with pytrees which is a concept burrowed from JAX.

Open Source Economics 9 May 11, 2022
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
A Tensorflow based library for Time Series Modelling with Gaussian Processes

Markovflow Documentation | Tutorials | API reference | Slack What does Markovflow do? Markovflow is a Python library for time-series analysis via prob

Secondmind Labs 24 Dec 12, 2022
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
PyTorch implementation for paper StARformer: Transformer with State-Action-Reward Representations.

StARformer This repository contains the PyTorch implementation for our paper titled StARformer: Transformer with State-Action-Reward Representations.

Jinghuan Shang 14 Dec 09, 2022
This is the repository for the paper "Have I done enough planning or should I plan more?"

Metacognitive Learning Tool box https://re.is.mpg.de What Is This? This repository contains two modules used to analyse metacognitive learning in huma

0 Dec 01, 2021
Object detection, 3D detection, and pose estimation using center point detection:

Objects as Points Object detection, 3D detection, and pose estimation using center point detection: Objects as Points, Xingyi Zhou, Dequan Wang, Phili

Xingyi Zhou 6.7k Jan 03, 2023
A symbolic-model-guided fuzzer for TLS

tlspuffin TLS Protocol Under FuzzINg A symbolic-model-guided fuzzer for TLS Master Thesis | Thesis Presentation | Documentation Disclaimer: The term "

69 Dec 20, 2022
M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images

M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images This repo is the official implementation of paper "M2MRF: Man

12 Dec 14, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 05, 2023