The implementation of our CIKM 2021 paper titled as: "Cross-Market Product Recommendation"

Related tags

Deep LearningFOREC
Overview

FOREC: A Cross-Market Recommendation System

This repository provides the implementation of our CIKM 2021 paper titled as "Cross-Market Product Recommendation". Please consider citing our paper if you find the code and XMarket dataset useful in your research.

The general schema of our FOREC recommendation system is shown below. For a pair of markets, the middle part shows the market-agnostic model that we pre-train, and then fork and fine-tune for each market shown in the left and right. Note that FOREC is capable of working with any desired number of target markets. However, for simplicity, we only experiment with pairs of markets for the experiments. For further details, please refer to our paper.

Requirements:

We use conda for our experimentations. Please refer to the requirements.txt for the list of libraries we use for our implementation. After setting up your environment, you can simply run this command pip install -r requirements.txt.

DATA

The DATA folder in this repository contains the cleaned and proccessed data that we use for our experiments. Please note that we made a few changes with releasing the data, and you might see slightly different numbers compared to the reported numbers in the paper.

If you wish to repeat the process on other categories of data or change the data preprocessing steps, prepare_data.ipynb provides the code for downloading and preprocessing data. Please refer to that jupyter notebook for further details. Don't hesitate to contact us in case of any problem.

Train the baseline and FOREC models (with Evaluations):

We provide three training scripts, for training baselines (single market, GMF, MLP, NMF++ and MAML) as well as FOREC model. Here are the list of models that for training and evaluating with the scripts provided:

  • train_base.py for GMF, MLP, NMF and their ++ versions as cross-market models
  • train_maml.py for training our MAML baseline
  • train_forec.py for trainig our proposed FOREC model

Note that since MAML and FOREC works on NMF architecture, you need to have same setting NMF++ model trained before proceeding with the MAML and FOREC training scripts. In addition, NMF requires that GMF and MLP models are trained, as it combines these two models into the architecture with some additional layers. See the middle part of the FOREC schema above.

In order to faciliate this, we provide a jupyter notebook (train_all.ipynb) that generates correct commands for all these trainings on any desired target market and augmenting source market pairs. Please follow the notebook for the training. For our trainings, we use slurm job management system on our server. However, you can still use/change the bash script generating part in the notebook to fit your own setup. These scripts are written into scripts folder created by the notebook. The logging of the training is alos in this directory under log sub-directory.

Note that for each of these, the train script evaluates on validation and test data (leave-one-out procedure for splitting---see data.py). The detailed evaluation results are dumped into EVAL folder as json files. Our trained checkpoints and an aggregator of evaluation json files will be provided shortly.

Citation

If you use this dataset, please refer to our CIKM’21 paper:

@inproceedings{bonab2021crossmarket,
    author = {Bonab, Hamed and Aliannejadi, Mohammad and Vardasbi, Ali and Kanoulas, Evangelos and Allan, James},
    booktitle = {Proceedings of the 30th ACM International Conference on Information \& Knowledge Management},
    publisher = {ACM},
    title = {Cross-Market Product Recommendation},
    year = {2021}}

Please feel free to either open an issue or contacting me at bonab [AT] cs.umass.edu

Owner
Hamed Bonab
PhD Candidate at UMass Amherst
Hamed Bonab
ncnn is a high-performance neural network inference framework optimized for the mobile platform

ncnn ncnn is a high-performance neural network inference computing framework optimized for mobile platforms. ncnn is deeply considerate about deployme

Tencent 16.2k Jan 05, 2023
Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

fastquant 🤓 Bringing backtesting to the mainstream fastquant allows you to easily backtest investment strategies with as few as 3 lines of python cod

Lorenzo Ampil 1k Dec 29, 2022
Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO)

V-MPO Simple code to demonstrate Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO) in Pyt

Nugroho Dewantoro 9 Jun 06, 2022
Binary classification for arrythmia detection with ECG datasets.

HEART DISEASE AI DATATHON 2021 [Eng] / [Kor] #English This is an AI diagnosis modeling contest that uses the heart disease echocardiography and electr

HY_Kim 3 Jul 14, 2022
Cweqgen - The CW Equation Generator

The CW Equation Generator The cweqgen (pronouced like "Queck-Jen") package provi

2 Jan 15, 2022
[NeurIPS 2021] "Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems"

Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems Introduction Multi-agent control i

VITA 6 May 05, 2022
This game was designed to encourage young people not to gamble on lotteries, as the probablity of correctly guessing the number is infinitesimal!

Lottery Simulator 2022 for Web Launch Application Developed by John Seong in Ontario. This game was designed to encourage young people not to gamble o

John Seong 2 Sep 02, 2022
Interpretable-contrastive-word-mover-s-embedding

Interpretable-contrastive-word-mover-s-embedding Paper Datasets Here is a Dropbox link to the datasets used in the paper: https://www.dropbox.com/sh/n

0 Nov 02, 2021
Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems

ACSC Automatic extrinsic calibration for non-repetitive scanning solid-state LiDAR and camera systems. System Architecture 1. Dependency Tested with U

KINO 192 Dec 13, 2022
A set of Deep Reinforcement Learning Agents implemented in Tensorflow.

Deep Reinforcement Learning Agents This repository contains a collection of reinforcement learning algorithms written in Tensorflow. The ipython noteb

Arthur Juliani 2.2k Jan 01, 2023
particle tracking model, works with the ROMS output file(qck.nc, his.nc)

particle-tracking-model-for-ROMS particle tracking model, works with the ROMS output file(qck.nc, his.nc) description this is a 2-dimensional particle

xusheng 1 Jan 11, 2022
DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021]

DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021] Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen Feng

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 98 Dec 21, 2022
Bayesian Meta-Learning Through Variational Gaussian Processes

vmgp This is the repository of Vivek Myers and Nikhil Sardana for our CS 330 final project, Bayesian Meta-Learning Through Variational Gaussian Proces

Vivek Myers 2 Nov 17, 2022
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

Ju He 307 Jan 03, 2023
A symbolic-model-guided fuzzer for TLS

tlspuffin TLS Protocol Under FuzzINg A symbolic-model-guided fuzzer for TLS Master Thesis | Thesis Presentation | Documentation Disclaimer: The term "

69 Dec 20, 2022
Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations

Transfer-Learning-in-Reinforcement-Learning Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations Final Report Tra

Trung Hieu Tran 4 Oct 17, 2022
Fast Neural Style for Image Style Transform by Pytorch

FastNeuralStyle by Pytorch Fast Neural Style for Image Style Transform by Pytorch This is famous Fast Neural Style of Paper Perceptual Losses for Real

Bengxy 81 Sep 03, 2022
Identify the emotion of multiple speakers in an Audio Segment

MevonAI - Speech Emotion Recognition Identify the emotion of multiple speakers in a Audio Segment Report Bug · Request Feature Try the Demo Here Table

Suyash More 110 Dec 03, 2022
🔀 Visual Room Rearrangement

AI2-THOR Rearrangement Challenge Welcome to the 2021 AI2-THOR Rearrangement Challenge hosted at the CVPR'21 Embodied-AI Workshop. The goal of this cha

AI2 55 Dec 22, 2022