3rd Place Solution of the Traffic4Cast Core Challenge @ NeurIPS 2021

Overview

3rd Place Solution of Traffic4Cast 2021 Core Challenge

This is the code for our solution to the NeurIPS 2021 Traffic4Cast Core Challenge.

Paper

Our solution is described in the "Solving Traffic4Cast Competition with U-Net and Temporal Domain Adaptation" paper.

If you wish to cite this code, please do it as follows:

@misc{konyakhin2021solving,
      title={Solving Traffic4Cast Competition with U-Net and Temporal Domain Adaptation}, 
      author={Vsevolod Konyakhin and Nina Lukashina and Aleksei Shpilman},
      year={2021},
      eprint={2111.03421},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Competition and Demonstration Track @ NeurIPS 2021

Learnt parameters

The models' learnt parameters are available by the link: https://drive.google.com/file/d/1zD0CecX4P3v5ugxaHO2CQW9oX7_D4BCa/view?usp=sharing
Please download the archive and unzip it into the weights folder of the repository, so its structure looks like the following:

├── ...
├── traffic4cast
├── weights
│   ├── densenet                 
│   │   ├── BERLIN_1008_1430_densenet_unet_mse_best_val_loss_2019=78.4303.pth                     
│   │   ├── CHICAGO_1010_1730_densenet_unet_mse_best_val_loss_2019=41.1579.pth
│   │   └── MELBOURNE_1009_1619_densenet_unet_mse_best_val_loss_2019=25.7395.pth    
│   ├── effnetb5
│   │   ├── BERLIN_1008_1430_efficientnetb5_unet_mse_best_val_loss_2019=80.3510.pth    
│   │   ├── CHICAGO_1012_1035_efficientnetb5_unet_mse_best_val_loss_2019=41.6425.pth
│   │   ├── ISTANBUL_1012_2315_efficientnetb5_unet_mse_best_val_loss_2019=55.7918.pth    
│   │   └── MELBOURNE_1010_0058_efficientnetb5_unet_mse_best_val_loss_2019=26.0132.pth    
│   └── unet
│       ├── BERLIN_0806_1425_vanilla_unet_mse_best_val_loss_2019=0.0000_v5.pth    
│       ├── CHICAGO_0805_0038_vanilla_unet_mse_best_val_loss_2019=42.6634.pth
│       ├── ISTANBUL_0805_2317_vanilla_unet_mse_best_val_loss_2019=0.0000_v4.pth
│       └── MELBOURNE_0804_1942_vanilla_unet_mse_best_val_loss_2019=26.7588.pth
├── ...

Submission reproduction

To generate the submission file, please run the following script:

# $1 - absolute path to the dataset, $2 device to run inference
sh submission.sh {absolute path to dataset} {cpu, cuda}
# Launch example
sh submission.sh /root/data/traffic4cast cuda

The above sctipt generates the submission file submission/submission_all_unets_da_none_mpcpm1_mean_temporal_{date}.zip, which gave us the best MSE of 49.379068541527 on the final leaderboard.

某学校选课系统GIF验证码数据集 + Baseline模型 + 上下游相关工具

elective-dataset-2021spring 某学校2021春季选课系统GIF验证码数据集(29338张) + 准确率98.4%的Baseline模型 + 上下游相关工具。 数据集采用 知识共享署名-非商业性使用 4.0 国际许可协议 进行许可。 Baseline模型和上下游相关工具采用

xmcp 27 Sep 17, 2021
Reinforcement learning library in JAX.

Reinforcement learning library in JAX.

Yicheng Luo 96 Oct 30, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
A novel benchmark dataset for Monocular Layout prediction

AutoLay AutoLay: Benchmarking Monocular Layout Estimation Kaustubh Mani, N. Sai Shankar, J. Krishna Murthy, and K. Madhava Krishna Abstract In this pa

Kaustubh Mani 39 Apr 26, 2022
Neural Scene Flow Prior (NeurIPS 2021 spotlight)

Neural Scene Flow Prior Xueqian Li, Jhony Kaesemodel Pontes, Simon Lucey Will appear on Thirty-fifth Conference on Neural Information Processing Syste

Lilac Lee 85 Jan 03, 2023
KwaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%)

KuaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%) KuaiRec is a real-world dataset collected from the recommendation log

Chongming GAO (高崇铭) 70 Dec 28, 2022
Code release for Convolutional Two-Stream Network Fusion for Video Action Recognition

Convolutional Two-Stream Network Fusion for Video Action Recognition

Christoph Feichtenhofer 676 Dec 31, 2022
Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks

Net2Net Code accompanying the NeurIPS 2020 oral paper Network-to-Network Translation with Conditional Invertible Neural Networks Robin Rombach*, Patri

CompVis Heidelberg 206 Dec 20, 2022
Pytorch version of SfmLearner from Tinghui Zhou et al.

SfMLearner Pytorch version This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghu

Clément Pinard 909 Dec 22, 2022
Bytedance Inc. 2.5k Jan 06, 2023
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
Pytorch implementation of VAEs for heterogeneous likelihoods.

Heterogeneous VAEs Beware: This repository is under construction 🛠️ Pytorch implementation of different VAE models to model heterogeneous data. Here,

Adrián Javaloy 35 Nov 29, 2022
wmctrl ported to Python Ctypes

work in progress wmctrl is a command that can be used to interact with an X Window manager that is compatible with the EWMH/NetWM specification. wmctr

Iyad Ahmed 22 Dec 31, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
Code & Experiments for "LILA: Language-Informed Latent Actions" to be presented at the Conference on Robot Learning (CoRL) 2021.

LILA LILA: Language-Informed Latent Actions Code and Experiments for Language-Informed Latent Actions (LILA), for using natural language to guide assi

Sidd Karamcheti 11 Nov 25, 2022
Phy-Q: A Benchmark for Physical Reasoning

Phy-Q: A Benchmark for Physical Reasoning Cheng Xue*, Vimukthini Pinto*, Chathura Gamage* Ekaterina Nikonova, Peng Zhang, Jochen Renz School of Comput

29 Dec 19, 2022
Cascading Feature Extraction for Fast Point Cloud Registration (BMVC 2021)

Cascading Feature Extraction for Fast Point Cloud Registration This repository contains the source code for the paper [Arxive link comming soon]. Meth

7 May 26, 2022
RAMA: Rapid algorithm for multicut problem

RAMA: Rapid algorithm for multicut problem Solves multicut (correlation clustering) problems orders of magnitude faster than CPU based solvers without

Paul Swoboda 60 Dec 13, 2022
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"

Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all

Simone Papicchio 4 Jul 16, 2022