Weight estimation in CT by multi atlas techniques

Related tags

Deep Learningmaweight
Overview

maweight

A Python package for multi-atlas based weight estimation for CT images, including segmentation by registration, feature extraction and model selection for regression.

About

A detailed description of the implemented methodology can be found in the paper:

The package is used intensively in the case study of estimating weights of meat cuts from the CT images of rabbit in the repository: https://github.com/gykovacs/rabbit_ct_weights

If you use the package, please consider citing the paper:

@article{Csoka2021,
    author={\'Ad\'am Cs\'oka and Gy\"orgy Kov\'acs and Vir\'ag \'Acs and Zsolt Matics and Zsolt Gerencs\'er and Zsolt Szendr\"o and \"Ors Petneh\'azy and Imre Repa and Mariann Moizs and Tam\'as Donk\'o},
    title={Multi-atlas segmentation based estimation of weights from CT scans in farm animal imaging and its applications to rabbit breeding programs},
    year={2021}
}

Installation (Windows/Linux/Mac)

Prerequisites: elastix

Make sure the elastix package (https://elastix.lumc.nl/) is installed and available in the command line by issuing

> elastix

If elastix is properly installed, the following textual output should appear in the terminal:

Use "elastix --help" for information about elastix-usage.

Installing the `maweight` package

Clone the GitHub repository:

> git clone [email protected]:gykovacs/maweight.git

Navigate into the root directory of the repository:

> cd maweight

Install the code into the active Python environment

> pip install .

Usage examples

Segmentation by elastic registration

The main functionality of the package is registering image A to image B by elastic registration and then transforming a set of images C, D, ... to image B by the same transformation field. This functionality is implemented in the `register_and_transform` function:

from maweight import register_and_transform

A # path, ndarray or Nifti1Image - the atlas image
B # path, ndarray or Nifti1Image - the unseen image
[C, D] # paths, ndarrays or Nifti1Image objects - the atlas annotations for A, to be transformed to B
[C_transformed_path, D_transformed_path] # paths of the output images

register_and_transform(A, B, [C, D], [C_transformed_path, D_transformed_path])

Feature extraction

Given an image B and a set of atlases registered to it [C, D, ...], with corresponding labels [Clabel, Dlabel, ...] (for the labeling of features), feature extraction with bin boundaries [b0, b1, ...] can be executed in terms of the `extract_features_3d` function:

from maweight import extract_features_3d

B # path, ndarray or Nifti1Image - a base image to extract features from
registered_atlases # list of paths, ndarrays or Nivti1Image objects
labels # list of labels of the atlases (used to label the features)
bins= [0, 20, 40, 60, 80, 100] # bin boundaries for histogram feature extraction

features= extract_features_3d(B, registered_atlases, labels, bins)

Model selection

Given a dataset of features extracted from the ensemble of segmentations, one can carry out regression model fitting by the `model_selection` function:

from maweight import model_selection

features # pandas DataFrame of features
targets # pandas Series of corresponding weights

results= model_selection(features, targets)

By default, the model selection runs simulated annealing based feature ssubset and regressor parameter selection for kNN, linear, lasso, ridge and PLS regression and returns the summary of results in a pandas DataFrame.

Owner
György Kovács
György Kovács
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa

19 Oct 14, 2022
EMNLP 2021 paper The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers.

Codebase for training transformers on systematic generalization datasets. The official repository for our EMNLP 2021 paper The Devil is in the Detail:

Csordás Róbert 57 Nov 21, 2022
Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness

Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness This repository contains the code used for the exper

H.R. Oosterhuis 28 Nov 29, 2022
An efficient and easy-to-use deep learning model compression framework

TinyNeuralNetwork 简体中文 TinyNeuralNetwork is an efficient and easy-to-use deep learning model compression framework, which contains features like neura

Alibaba 441 Dec 25, 2022
Best practices for segmentation of the corporate network of any company

Best-practice-for-network-segmentation What is this? This project was created to publish the best practices for segmentation of the corporate network

2k Jan 07, 2023
Revealing and Protecting Labels in Distributed Training

Revealing and Protecting Labels in Distributed Training

Google Interns 0 Nov 09, 2022
Pre-Training 3D Point Cloud Transformers with Masked Point Modeling

Point-BERT: Pre-Training 3D Point Cloud Transformers with Masked Point Modeling Created by Xumin Yu*, Lulu Tang*, Yongming Rao*, Tiejun Huang, Jie Zho

Lulu Tang 306 Jan 06, 2023
Code and data for paper "Deep Photo Style Transfer"

deep-photo-styletransfer Code and data for paper "Deep Photo Style Transfer" Disclaimer This software is published for academic and non-commercial use

Fujun Luan 9.9k Dec 29, 2022
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Squidward 62 Nov 28, 2022
Pretty Tensor - Fluent Neural Networks in TensorFlow

Pretty Tensor provides a high level builder API for TensorFlow. It provides thin wrappers on Tensors so that you can easily build multi-layer neural networks.

Google 1.2k Dec 29, 2022
Differentiable Simulation of Soft Multi-body Systems

Differentiable Simulation of Soft Multi-body Systems Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, Ming C. Lin [Paper] [Code] Updates The C++ backend s

YilingQiao 26 Dec 23, 2022
yufan 81 Dec 08, 2022
[LREC] MMChat: Multi-Modal Chat Dataset on Social Media

MMChat This repo contains the code and data for the LREC2022 paper MMChat: Multi-Modal Chat Dataset on Social Media. Dataset MMChat is a large-scale d

Silver 47 Jan 03, 2023
Automatically replace ONNX's RandomNormal node with Constant node.

onnx-remove-random-normal This is a script to replace RandomNormal node with Constant node. Example Imagine that we have something ONNX model like the

Masashi Shibata 1 Dec 11, 2021
Code for the paper: Hierarchical Reinforcement Learning With Timed Subgoals, published at NeurIPS 2021

Hierarchical reinforcement learning with Timed Subgoals (HiTS) This repository contains code for reproducing experiments from our paper "Hierarchical

Autonomous Learning Group 21 Dec 03, 2022
This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transformer"

FlatTN This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transfor

THUHCSI 74 Nov 28, 2022
ChainerRL is a deep reinforcement learning library built on top of Chainer.

ChainerRL and PFRL ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement al

Chainer 1.1k Jan 01, 2023
ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

Zongdai 107 Dec 20, 2022
PyTorch implementation of "VRT: A Video Restoration Transformer"

VRT: A Video Restoration Transformer Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc Van Gool Computer

Jingyun Liang 837 Jan 09, 2023
This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper

Deep Continuous Clustering Introduction This is a Pytorch implementation of the DCC algorithms presented in the following paper (paper): Sohil Atul Sh

Sohil Shah 197 Nov 29, 2022