PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021.

Related tags

Deep LearningIBRNet
Overview

IBRNet: Learning Multi-View Image-Based Rendering

PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021.

IBRNet: Learning Multi-View Image-Based Rendering
Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul Srinivasan, Howard Zhou, Jonathan T. Barron, Ricardo Martin-Brualla, Noah Snavely, Thomas Funkhouser
CVPR 2021

project page | paper | data & model

Demo

Installation

Clone this repo with submodules:

git clone --recurse-submodules https://github.com/googleinterns/IBRNet
cd IBRNet/

The code is tested with Python3.7, PyTorch == 1.5 and CUDA == 10.2. We recommend you to use anaconda to make sure that all dependencies are in place. To create an anaconda environment:

conda env create -f environment.yml
conda activate ibrnet

Datasets

1. Training datasets

├──data/
    ├──ibrnet_collected_1/
    ├──ibrnet_collected_2/
    ├──real_iconic_noface/
    ├──spaces_dataset/
    ├──RealEstate10K-subset/
    ├──google_scanned_objects/

Please first cd data/, and then download datasets into data/ following the instructions below. The organization of the datasets should be the same as above.

(a) Our captures

We captured 67 forward-facing scenes (each scene contains 20-60 images). To download our data ibrnet_collected.zip (4.1G) for training, run:

gdown https://drive.google.com/uc?id=1rkzl3ecL3H0Xxf5WTyc2Swv30RIyr1R_
unzip ibrnet_collected.zip

P.S. We've captured some more scenes in ibrnet_collected_more.zip, but we didn't include them for training. Feel free to download them if you would like more scenes for your task, but you wouldn't need them to reproduce our results.

(b) LLFF released scenes

Download and process real_iconic_noface.zip (6.6G) using the following commands:

# download 
gdown https://drive.google.com/uc?id=1ThgjloNt58ZdnEuiCeRf9tATJ-HI0b01
unzip real_iconic_noface.zip

# [IMPORTANT] remove scenes that appear in the test set
cd real_iconic_noface/
rm -rf data2_fernvlsb data2_hugetrike data2_trexsanta data3_orchid data5_leafscene data5_lotr data5_redflower
cd ../

(c) Spaces Dataset

Download spaces dataset by:

git clone https://github.com/augmentedperception/spaces_dataset

(d) RealEstate10K

The full RealEstate10K dataset is very large and can be difficult to download. Hence, we provide a subset of RealEstate10K training scenes containing only 200 scenes. In our experiment, we found using more scenes from RealEstate10K only provides marginal improvement. To download our camera files (2MB):

gdown https://drive.google.com/uc?id=1IgJIeCPPZ8UZ529rN8dw9ihNi1E9K0hL
unzip RealEstate10K_train_cameras_200.zip -d RealEstate10K-subset

Besides the camera files, you also need to download the corresponding video frames from YouTube. You can download the frames (29G) by running the following commands. The script uses ffmpeg to extract frames, so please make sure you have ffmpeg installed.

git clone https://github.com/qianqianwang68/RealEstate10K_Downloader
cd RealEstate10K_Downloader
python generate_dataset.py train
cd ../

(e) Google Scanned Objects

Google Scanned Objects contain 1032 diffuse objects with various shapes and appearances. We use gaps to render these objects for training. Each object is rendered at 512 × 512 pixels from viewpoints on a quarter of the sphere. We render 250 views for each object. To download our renderings (7.5GB), run:

gdown https://drive.google.com/uc?id=1w1Cs0yztH6kE3JIz7mdggvPGCwIKkVi2
unzip google_scanned_objects_renderings.zip

2. Evaluation datasets

├──data/
    ├──deepvoxels/
    ├──nerf_synthetic/
    ├──nerf_llff_data/

The evaluation datasets include DeepVoxel synthetic dataset, NeRF realistic 360 dataset and the real forward-facing dataset. To download all three datasets (6.7G), run the following command under data/ directory:

bash download_eval_data.sh

Evaluation

First download our pretrained model under the project root directory:

gdown https://drive.google.com/uc?id=165Et85R8YnL-5NcehG0fzqsnAUN8uxUJ
unzip pretrained_model.zip

You can use eval/eval.py to evaluate the pretrained model. For example, to obtain the PSNR, SSIM and LPIPS on the fern scene in the real forward-facing dataset, you can first specify your paths in configs/eval_llff.txt and then run:

cd eval/
python eval.py --config ../configs/eval_llff.txt

Rendering videos of smooth camera paths

You can use render_llff_video.py to render videos of smooth camera paths for the real forward-facing scenes. For example, you can first specify your paths in configs/eval_llff.txt and then run:

cd eval/
python render_llff_video.py --config ../configs/eval_llff.txt

You can also capture your own data of forward-facing scenes and synthesize novel views using our method. Please follow the instructions from LLFF on how to capture and process the images.

Training

We strongly recommend you to train the model with multiple GPUs:

# this example uses 8 GPUs (nproc_per_node=8) 
python -m torch.distributed.launch --nproc_per_node=8 train.py --config configs/pretrain.txt

Alternatively, you can train with a single GPU by setting distributed=False in configs/pretrain.txt and running:

python train.py --config configs/pretrain.txt

Finetuning

To finetune on a specific scene, for example, fern, using the pretrained model, run:

# this example uses 2 GPUs (nproc_per_node=2) 
python -m torch.distributed.launch --nproc_per_node=2 train.py --config configs/finetune_llff.txt

Additional information

  • Our current implementation is not well-optimized in terms of the time efficiency at inference. Rendering a 1000x800 image can take from 30s to over a minute depending on specific GPU models. Please make sure to maximize the GPU memory utilization by increasing the size of the chunk to reduce inference time. You can also try to decrease the number of input source views (but subject to performance loss).
  • If you want to create and train on your own datasets, you can implement your own Dataset class following our examples in ibrnet/data_loaders/. You can verify the camera poses using data_verifier.py in ibrnet/data_loaders/.
  • Since the evaluation datasets are either object-centric or forward-facing scenes, our provided view selection methods are very simple (based on either viewpoints or camera locations). If you want to evaluate our method on new scenes with other kinds of camera distributions, you might need to implement your own view selection methods to identify the most effective source views.
  • If you have any questions, you can contact [email protected].

Citation

@inproceedings{wang2021ibrnet,
  author    = {Wang, Qianqian and Wang, Zhicheng and Genova, Kyle and Srinivasan, Pratul and Zhou, Howard  and Barron, Jonathan T. and Martin-Brualla, Ricardo and Snavely, Noah and Funkhouser, Thomas},
  title     = {IBRNet: Learning Multi-View Image-Based Rendering},
  booktitle = {CVPR},
  year      = {2021}
}

Owner
Google Interns
Google Interns
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
PyTorch Implementation of CycleGAN and SSGAN for Domain Transfer (Minimal)

MNIST-to-SVHN and SVHN-to-MNIST PyTorch Implementation of CycleGAN and Semi-Supervised GAN for Domain Transfer. Prerequites Python 3.5 PyTorch 0.1.12

Yunjey Choi 401 Dec 30, 2022
Code of the paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodner and Joachim Denzler

Part Detector Discovery This is the code used in our paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodne

Computer Vision Group Jena 17 Feb 22, 2022
Real time sign language recognition

The proposed work aims at converting american sign language gestures into English that can be understood by everyone in real time.

Mohit Kaushik 6 Jun 13, 2022
Neural network for recognizing the gender of people in photos

Neural Network For Gender Recognition How to test it? Install requirements.txt file using pip install -r requirements.txt command Run nn.py using pyth

Valery Chapman 1 Sep 18, 2022
you can add any codes in any language by creating its respective folder (if already not available).

HACKTOBERFEST-2021-WEB-DEV Beginner-Hacktoberfest Need Your first pr for hacktoberfest 2k21 ? come on in About This is repository of Responsive Portfo

Suman Sharma 8 Oct 17, 2022
A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
OMLT: Optimization and Machine Learning Toolkit

OMLT is a Python package for representing machine learning models (neural networks and gradient-boosted trees) within the Pyomo optimization environment.

C⚙G - Imperial College London 179 Jan 02, 2023
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
A toy project using OpenCV and PyMunk

A toy project using OpenCV, PyMunk and Mediapipe the source code for my LindkedIn post It's just a toy project and I didn't write a documentation yet,

Amirabbas Asadi 82 Oct 28, 2022
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

STACS 18 Aug 04, 2022
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch

MINDs Lab 170 Jan 04, 2023
Improving Convolutional Networks via Attention Transfer (ICLR 2017)

Attention Transfer PyTorch code for "Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Tran

Sergey Zagoruyko 1.4k Dec 23, 2022
For auto aligning, cropping, and scaling HR and LR images for training image based neural networks

ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip

15 Dec 04, 2022
Official implementation for "Image Quality Assessment using Contrastive Learning"

Image Quality Assessment using Contrastive Learning Pavan C. Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli and Alan C. Bovik This is the offi

Pavan Chennagiri 67 Dec 30, 2022
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come

IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-quality pre-trained models from torchvision, MMLabs, and soon Pytorch Image Models. It or

airctic 789 Dec 29, 2022
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 123 Dec 23, 2022
Keras implementation of AdaBound

AdaBound for Keras Keras port of AdaBound Optimizer for PyTorch, from the paper Adaptive Gradient Methods with Dynamic Bound of Learning Rate. Usage A

Somshubra Majumdar 132 Sep 23, 2022
SEC'21: Sparse Bitmap Compression for Memory-Efficient Training onthe Edge

Training Deep Learning Models on The Edge Training on the Edge enables continuous learning from new data for deployed neural networks on memory-constr

Brown University Scale Lab 4 Nov 18, 2022
Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network

Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network This repository is the official implementation of Speech Separati

Kai Li (李凯) 116 Nov 09, 2022