PLUR is a collection of source code datasets suitable for graph-based machine learning.

Overview

PLUR

PLUR (Programming-Language Understanding and Repair) is a collection of source code datasets suitable for graph-based machine learning. We provide scripts for downloading, processing, and loading the datasets. This is done by offering a unified API and data structures for all datasets.

Installation

SRC_DIR=${PWD}/src
mkdir -p ${SRC_DIR} && cd ${SRC_DIR}
# For Cubert.
git clone https://github.com/google-research/google-research --depth=1
export PYTHONPATH=${PYTHONPATH}:${SRC_DIR}/google-research
git clone https://github.com/google-research/plur && cd plur
python -m pip install -r requirements.txt
python setup.py install

Test execution on small dataset

cd plur
python3 plur_data_generation.py --dataset_name=manysstubs4j_dataset \
  --stage_1_dir=/tmp/manysstubs4j_dataset/stage_1 \
  --stage_2_dir=/tmp/manysstubs4j_dataset/stage_2 \
  --train_data_percentage=40 \
  --validation_data_percentage=30 \
  --test_data_percentage=30

Usage

Basic usage

Data generation (step 1)

Data generation is done by calling plur.plur_data_generation.create_dataset(). The data generation runs in two stages:

  1. Convert raw data to plur.utils.GraphToOutputExample.
  2. Convert plur.utils.GraphToOutputExample to TFExample.

Stage 1 is unique for each dataset, but stage 2 is the same for almost all datasets.

from plur.plur_data_generation import create_dataset

dataset_name = 'code2seq_dataset'
dataset_stage_1_directory = '/tmp/code2seq_dataset/stage_1'
stage_1_kwargs = dict()
dataset_stage_2_directory = '/tmp/code2seq_dataset/stage_2'
stage_2_kwargs = dict()
create_dataset(dataset_name, dataset_stage_1_directory, dataset_stage_2_directory, stage_1_kwargs, stage_2_kwargs)

plur_data_generation.py also provides a command line interface, but it offers less flexibility.

python3 plur_data_generation.py --stage_1_dir=/tmp/code2seq_dataset/stage_1 --stage_2_dir=/tmp/code2seq_dataset/stage_2

Data loader (step 2)

After the data is generated, you can use PlurDataLoader to load the data. The data loader loads TFExamples but returns them as numpy arrays.

from plur.plur_data_loader import PlurDataLoader
from plur.util import constants

dataset_stage_2_directory = '/tmp/code2seq_dataset/stage_2'
split = constants.TRAIN_SPLIT_NAME
batch_size = 32
repeat_count = -1
drop_remainder = True
train_data_generator = PlurDataLoader(dataset_stage_2_directory, split, batch_size, repeat_count, drop_remainder)

for batch_data in train_data_generator:
  # your training loop...

Training (step 3)

This is the part where you use your own model to train on the PLUR data.

The models and the training code from the PLUR paper are not yet part of the current release. We plan to release it in the near future.

Evaluating (step 4)

Once the training is finished, you can generate the predictions on the test data and use plur_evaluator.py to evaluate the performance. plur_evaluator.py works in offline mode, meaning that it expects a file containing the ground truths, and a file containing the predictions.

python3 plur_evaluator.py --dataset_name=code2seq_dataset --target_file=/tmp/code2seq_dataset/targets.txt --prediction_file=/tmp/code2seq_dataset/predictions.txt

Transforming and filtering data

If there is something fundamental you want to change in the dataset, you should apply them in stage 1 of data generation, otherwise apply them in stage 2. The idea is that stage 1 should only be run once per dataset (to create the plur.utils.GraphToOutputExample), and stage 2 should be run each time you want to train on different data (to create the TFRecords).

All transformation and filtering functions are applied on plur.utils.GraphToOutputExample, see plur.utils.GraphToOutputExample for more information.

E.g. a transformation that can be run in stage 1 is that your model expects that graphs in the dataset have no loop, and you write your transformation function to remove loops. This will ensure that stage 2 will read data where the graph has no loops.

E.g. of filters that can be run in stage 2 is that you want to check your model performance on different graph sizes in terms of number of nodes. You write your own filter function to filter graphs with a large number of nodes.

from plur.plur_data_generation import create_dataset

dataset_name = 'code2seq_dataset'
dataset_stage_1_directory = '/tmp/code2seq_dataset/stage_1'
stage_1_kwargs = dict()
dataset_stage_2_directory = '/tmp/code2seq_dataset/stage_2'
def _filter_graph_size(graph_to_output_example, graph_size=1024):
  return len(graph_to_output_example.get_nodes()) <= graph_size
stage_2_kwargs = dict(
    train_filter_funcs=(_filter_graph_size,),
    validation_filter_funcs=(_filter_graph_size,)
)
create_dataset(dataset_name, dataset_stage_1_directory, dataset_stage_2_directory, stage_1_kwargs, stage_2_kwargs)

Advanced usage

plur.plur_data_generation.create_dataset() is just a thin wrapper around plur.stage_1.plur_dataset and plur.stage_2.graph_to_output_example_to_tfexample.

from plur.plur_data_generation import create_dataset

dataset_name = 'code2seq_dataset'
dataset_stage_1_directory = '/tmp/code2seq_dataset/stage_1'
stage_1_kwargs = dict()
dataset_stage_2_directory = '/tmp/code2seq_dataset/stage_2'
stage_2_kwargs = dict()
create_dataset(dataset_name, dataset_stage_1_directory, dataset_stage_2_directory, stage_1_kwargs, stage_2_kwargs)

is equivalent to

from plur.stage_1.code2seq_dataset import Code2seqDataset
from plur.stage_2.graph_to_output_example_to_tfexample import GraphToOutputExampleToTfexample

dataset_name = 'code2seq_dataset'
dataset_stage_1_directory = '/tmp/code2seq_dataset/stage_1'
dataset_stage_2_directory = '/tmp/code2seq_dataset/stage_2'
dataset = Code2seqDataset(dataset_stage_1_directory)
dataest.stage_1_mkdirs()
dataset.download_dataset()
dataset.run_pipeline()

dataset = GraphToOutputExampleToTfexample(dataset_stage_1_directory, dataset_stage_2_directory, dataset_name)
dataset.stage_2_mkdirs()
dataset.run_pipeline()

You can check out plur.stage_1.code2seq_dataset for arguments relevant for code2seq dataset. For example code2seq dataset provides java-small, java-med and java-large datasets. Therefore you can create a java-large dataset in this way.

from plur.stage_1.code2seq_dataset import Code2seqDataset

dataset_name = 'code2seq_dataset'
dataset_stage_1_directory = '/tmp/code2seq_dataset/stage_1'

dataset = Code2seqDataset(dataset_stage_1_directory, dataset_size='large')
dataest.stage_1_mkdirs()
dataset.download_dataset()
dataset.run_pipeline()

Adding a new dataset

All datasets should inherit plur.stage_1.plur_dataset.PlurDataset, and placed under plur/stage_1/, which requires you to implement:

  • download_dataset(): Code to download the dataset, we provide download_dataset_using_git() to download from git and download_dataset_using_requests() to download from a URL, which also works with a Google Drive URL. In download_dataset_using_git() we download the dataset from a specific commit id. In download_dataset_using_requests() we check the sha1sum for the downloaded files. This is to ensure that the same version of PLUR downloads the same raw data.
  • get_all_raw_data_paths(): It should return a list of paths, where each path is a file containing the raw data in the datasets.
  • raw_data_paths_to_raw_data_do_fn(): It should return a beam.DoFn class that overrides process(). The process() should tell beam how to open the files returned by get_all_raw_data_paths(). It is also here we define if the data belongs to any split (train/validation/test).
  • raw_data_to_graph_to_output_example(): This function transforms raw data from raw_data_paths_to_raw_data_do_fn() to GraphToOutputExample.

Then add/change the following lines in plur/plur_data_generation.py:

from plur.stage_1.foo_dataset import FooDataset

flags.DEFINE_enum('dataset_name', 'dummy_dataset',
                  ['code2seq_dataset', 'dummy_dataset',
                   'funcom_dataset', 'great_var_misuse_dataset',
                   'hoppity_single_ast_diff_dataset',
                   'manysstubs4j_dataset', 'foo_dataset'],
                  'Name of the dataset to generate data.')


def get_dataset_class(dataset_name):
  """Get the dataset class based on dataset_name."""
  if dataset_name == 'code2seq_dataset':
    return Code2SeqDataset
  elif dataset_name == 'dummy_dataset':
    return DummyDataset
  elif dataset_name == 'funcom_dataset':
    return FuncomDataset
  elif dataset_name == 'great_var_misuse_dataset':
    return GreatVarMisuseDataset
  elif dataset_name == 'hoppity_single_ast_diff_dataset':
    return HoppitySingleAstDiffDataset
  elif dataset_name == 'manysstubs4j_dataset':
    return ManySStuBs4JDataset
  elif dataset_name == 'foo_dataset':
    return FooDataset
  else:
    raise ValueError('{} is not supported.'.format(dataset_name))

Evaluation details

The details of how evaluation is performed are in plur/eval/README.md.

License

Licensed under the Apache 2.0 License.

Disclaimer

This is not an officially supported Google product.

Citation

Please cite the PLUR paper, Chen et al. https://proceedings.neurips.cc//paper/2021/hash/c2937f3a1b3a177d2408574da0245a19-Abstract.html

Owner
Google Research
Google Research
fMRIprep Pipeline To Machine Learning

fMRIprep Pipeline To Machine Learning(Demo) 所有配置均在config.py文件下定义 前置环境(lilab) 各个节点均安装docker,并有fmripre的镜像 可以使用conda中的base环境(相应的第三份包之后更新) 1. fmriprep scr

Alien 3 Mar 08, 2022
Pandas Machine Learning and Quant Finance Library Collection

Pandas Machine Learning and Quant Finance Library Collection

148 Dec 07, 2022
Python package for concise, transparent, and accurate predictive modeling

Python package for concise, transparent, and accurate predictive modeling. All sklearn-compatible and easy to use. 📚 docs • 📖 demo notebooks Modern

Chandan Singh 983 Jan 01, 2023
Time series changepoint detection

changepy Changepoint detection in time series in pure python Install pip install changepy Examples from changepy import pelt from cha

Rui Gil 92 Nov 08, 2022
A naive Bayes model for cancer classification using a set of documents

Naivebayes text classifcation model for cancer and noncancer documents Author: Alex King Purpose Requirements/files included How to use 1. Purpose The

Alex W King 1 Nov 24, 2021
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

neurodata 3 Dec 16, 2022
Avocado hass time series vs predict price

AVOCADO HASS TIME SERIES VÀ PREDICT PRICE Trước khi vào Heroku muốn giao diện đẹp mọi người chuyển giúp mình theo hình bên dưới https://avocado-hass.h

hieulmsc 3 Dec 18, 2021
This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev

MLProject_01 This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev Context Dataset English question data set file F

Hadi Nakhi 1 Dec 18, 2021
Practical Time-Series Analysis, published by Packt

Practical Time-Series Analysis This is the code repository for Practical Time-Series Analysis, published by Packt. It contains all the supporting proj

Packt 325 Dec 23, 2022
NumPy-based implementation of a multilayer perceptron (MLP)

My own NumPy-based implementation of a multilayer perceptron (MLP). Several of its components can be tuned and played with, such as layer depth and size, hidden and output layer activation functions,

1 Feb 10, 2022
An easier way to build neural search on the cloud

Jina is geared towards building search systems for any kind of data, including text, images, audio, video and many more. With the modular design & multi-layer abstraction, you can leverage the effici

Jina AI 17k Jan 01, 2023
MLBox is a powerful Automated Machine Learning python library.

MLBox is a powerful Automated Machine Learning python library. It provides the following features: Fast reading and distributed data preprocessing/cle

Axel 1.4k Jan 06, 2023
XAI - An eXplainability toolbox for machine learning

XAI - An eXplainability toolbox for machine learning XAI is a Machine Learning library that is designed with AI explainability in its core. XAI contai

The Institute for Ethical Machine Learning 875 Dec 27, 2022
Fourier-Bayesian estimation of stochastic volatility models

fourier-bayesian-sv-estimation Fourier-Bayesian estimation of stochastic volatility models Code used to run the numerical examples of "Bayesian Approa

15 Jun 20, 2022
A handy tool for common machine learning models' hyper-parameter tuning.

Common machine learning models' hyperparameter tuning This repo is for a collection of hyper-parameter tuning for "common" machine learning models, in

Kevin Hu 2 Jan 27, 2022
(3D): LeGO-LOAM, LIO-SAM, and LVI-SAM installation and application

SLAM-application: installation and test (3D): LeGO-LOAM, LIO-SAM, and LVI-SAM Tested on Quadruped robot in Gazebo ● Results: video, video2 Requirement

EungChang-Mason-Lee 203 Dec 26, 2022
An open-source library of algorithms to analyse time series in GPU and CPU.

An open-source library of algorithms to analyse time series in GPU and CPU.

Shapelets 216 Dec 30, 2022
This repository has datasets containing information of Uber pickups in NYC from April 2014 to September 2014 and January to June 2015. data Analysis , virtualization and some insights are gathered here

uber-pickups-analysis Data Source: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city Information about data set The dataset contain

B DEVA DEEKSHITH 1 Nov 03, 2021
Educational python for Neural Networks, written in pure Python/NumPy.

Educational python for Neural Networks, written in pure Python/NumPy.

127 Oct 27, 2022
Responsible AI Workshop: a series of tutorials & walkthroughs to illustrate how put responsible AI into practice

Responsible AI Workshop Responsible innovation is top of mind. As such, the tech industry as well as a growing number of organizations of all kinds in

Microsoft 9 Sep 14, 2022