We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction

Overview

HuggingMolecules

License

We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction. This repository aims to give easy access to state-of-the-art pre-trained models.

Quick tour

To quickly fine-tune a model on a dataset using the pytorch lightning package follow the below example based on the MAT model and the freesolv dataset:

from huggingmolecules import MatModel, MatFeaturizer

# The following import works only from the source code directory:
from experiments.src import TrainingModule, get_data_loaders

from torch.nn import MSELoss
from torch.optim import Adam

from pytorch_lightning import Trainer
from pytorch_lightning.metrics import MeanSquaredError

# Build and load the pre-trained model and the appropriate featurizer:
model = MatModel.from_pretrained('mat_masking_20M')
featurizer = MatFeaturizer.from_pretrained('mat_masking_20M')

# Build the pytorch lightning training module:
pl_module = TrainingModule(model,
                           loss_fn=MSELoss(),
                           metric_cls=MeanSquaredError,
                           optimizer=Adam(model.parameters()))

# Build the data loader for the freesolv dataset:
train_dataloader, _, _ = get_data_loaders(featurizer,
                                          batch_size=32,
                                          task_name='ADME',
                                          dataset_name='hydrationfreeenergy_freesolv')

# Build the pytorch lightning trainer and fine-tune the module on the train dataset:
trainer = Trainer(max_epochs=100)
trainer.fit(pl_module, train_dataloader=train_dataloader)

# Make the prediction for the batch of SMILES strings:
batch = featurizer(['C/C=C/C', '[C]=O'])
output = pl_module.model(batch)

Installation

Create your conda environment and install the rdkit package:

conda create -n huggingmolecules python=3.8.5
conda activate huggingmolecules
conda install -c conda-forge rdkit==2020.09.1

Then install huggingmolecules from the cloned directory:

conda activate huggingmolecules
pip install -e ./src

Project Structure

The project consists of two main modules: src/ and experiments/ modules:

  • The src/ module contains abstract interfaces for pre-trained models along with their implementations based on the pytorch library. This module makes configuring, downloading and running existing models easy and out-of-the-box.
  • The experiments/ module makes use of abstract interfaces defined in the src/ module and implements scripts based on the pytorch lightning package for running various experiments. This module makes training, benchmarking and hyper-tuning of models flawless and easily extensible.

Supported models architectures

Huggingmolecules currently provides the following models architectures:

For ease of benchmarking, we also include wrappers in the experiments/ module for three other models architectures:

The src/ module

The implementations of the models in the src/ module are divided into three modules: configuration, featurization and models module. The relation between these modules is shown on the following examples based on the MAT model:

Configuration examples

from huggingmolecules import MatConfig

# Build the config with default parameters values, 
# except 'd_model' parameter, which is set to 1200:
config = MatConfig(d_model=1200)

# Build the pre-defined config:
config = MatConfig.from_pretrained('mat_masking_20M')

# Build the pre-defined config with 'init_type' parameter set to 'normal':
config = MatConfig.from_pretrained('mat_masking_20M', init_type='normal')

# Save the pre-defined config with the previous modification:
config.save_to_cache('mat_masking_20M_normal.json')

# Restore the previously saved config:
config = MatConfig.from_pretrained('mat_masking_20M_normal.json')

Featurization examples

from huggingmolecules import MatConfig, MatFeaturizer

# Build the featurizer with pre-defined config:
config = MatConfig.from_pretrained('mat_masking_20M')
featurizer = MatFeaturizer(config)

# Build the featurizer in one line:
featurizer = MatFeaturizer.from_pretrained('mat_masking_20M')

# Encode (featurize) the batch of two SMILES strings: 
batch = featurizer(['C/C=C/C', '[C]=O'])

Models examples

from huggingmolecules import MatConfig, MatFeaturizer, MatModel

# Build the model with the pre-defined config:
config = MatConfig.from_pretrained('mat_masking_20M')
model = MatModel(config)

# Load the pre-trained weights 
# (which do not include the last layer of the model)
model.load_weights('mat_masking_20M')

# Build the model and load the pre-trained weights in one line:
model = MatModel.from_pretrained('mat_masking_20M')

# Encode (featurize) the batch of two SMILES strings: 
featurizer = MatFeaturizer.from_pretrained('mat_masking_20M')
batch = featurizer(['C/C=C/C', '[C]=O'])

# Feed the model with the encoded batch:
output = model(batch)

# Save the weights of the model (usually after the fine-tuning process):
model.save_weights('tuned_mat_masking_20M.pt')

# Load the previously saved weights
# (which now includes all layers of the model):
model.load_weights('tuned_mat_masking_20M.pt')

# Load the previously saved weights, but without 
# the last layer of the model ('generator' in the case of the 'MatModel')
model.load_weights('tuned_mat_masking_20M.pt', excluded=['generator'])

# Build the model and load the previously saved weights:
config = MatConfig.from_pretrained('mat_masking_20M')
model = MatModel.from_pretrained('tuned_mat_masking_20M.pt',
                                 excluded=['generator'],
                                 config=config)

Running tests

To run base tests for src/ module, type:

pytest src/ --ignore=src/tests/downloading/

To additionally run tests for downloading module (which will download all models to your local computer and therefore may be slow), type:

pytest src/tests/downloading

The experiments/ module

Requirements

In addition to dependencies defined in the src/ module, the experiments/ module goes along with few others. To install them, run:

pip install -r experiments/requirements.txt

The following packages are crucial for functioning of the experiments/ module:

Neptune.ai

In addition, we recommend installing the neptune.ai package:

  1. Sign up to neptune.ai at https://neptune.ai/.

  2. Get your Neptune API token (see getting-started for help).

  3. Export your Neptune API token to NEPTUNE_API_TOKEN environment variable.

  4. Install neptune-client: pip install neptune-client.

  5. Enable neptune.ai in the experiments/configs/setup.gin file.

  6. Update neptune.project_name parameters in experiments/configs/bases/*.gin files.

Running scripts:

We recommend running experiments scripts from the source code. For the moment there are three scripts implemented:

  • experiments/scripts/train.py - for training with the pytorch lightning package
  • experiments/scripts/tune_hyper.py - for hyper-parameters tuning with the optuna package
  • experiments/scripts/benchmark.py - for benchmarking based on the hyper-parameters tuning (grid-search)

In general running scripts can be done with the following syntax:

python -m experiments.scripts. /
       -d  / 
       -m  /
       -b 

Then the script .py runs with functions/methods parameters values defined in the following gin-config files:

  1. experiments/configs/bases/.gin
  2. experiments/configs/datasets/.gin
  3. experiments/configs/models/.gin

If the binding flag -b is used, then bindings defined in overrides corresponding bindings defined in above gin-config files.

So for instance, to fine-tune the MAT model (pre-trained on masking_20M task) on the freesolv dataset using GPU 1, simply run:

python -m experiments.scripts.train /
       -d freesolv / 
       -m mat /
       -b model.pretrained_name=\"mat_masking_20M\"#train.gpus=[1]

or equivalently:

python -m experiments.scripts.train /
       -d freesolv / 
       -m mat /
       --model.pretrained_name mat_masking_20M /
       --train.gpus [1]

Local dataset

To use a local dataset, create an appropriate gin-config file in the experiments/configs/datasets directory and specify the data.data_path parameter within. For details see the get_data_split implementation.

Benchmarking

For the moment there is one benchmark available. It works as follows:

  • experiments/scripts/benchmark.py: on the given dataset we fine-tune the given model on 10 learning rates and 6 seeded data splits (60 fine-tunings in total). Then we choose that learning rate that minimizes an averaged (on 6 data splits) validation metric (metric computed on the validation dataset, e.g. RMSE). The result is the averaged value of test metric for the chosen learning rate.

Running a benchmark is essentially the same as running any other script from the experiments/ module. So for instance to benchmark the vanilla MAT model (without pre-training) on the Caco-2 dataset using GPU 0, simply run:

python -m experiments.scripts.benchmark /
       -d caco2 / 
       -m mat /
       --model.pretrained_name None /
       --train.gpus [0]

However, the above script will only perform 60 fine-tunings. It won't compute the final benchmark result. To do that wee need to run:

python -m experiments.scripts.benchmark --results_only /
       -d caco2 / 
       -m mat

The above script won't perform any fine-tuning, but will only compute the benchmark result. If we had neptune enabled in experiments/configs/setup.gin, all data necessary to compute the result will be fetched from the neptune server.

Benchmark results

We performed the benchmark described in Benchmarking as experiments/scripts/benchmark.py for various models architectures and pre-training tasks.

Summary

We report mean/median ranks of tested models across all datasets (both regression and classification ones). For detailed results see Regression and Classification sections.

model mean rank rank std
MAT 200k 5.6 3.5
MAT 2M 5.3 3.4
MAT 20M 4.1 2.2
GROVER Base 3.8 2.7
GROVER Large 3.6 2.4
ChemBERTa 7.4 2.8
MolBERT 5.9 2.9
D-MPNN 6.3 2.3
D-MPNN 2d 6.4 2.0
D-MPNN mc 5.3 2.1

Regression

As the metric we used MAE for QM7 and RMSE for the rest of datasets.

model FreeSolv Caco-2 Clearance QM7 Mean rank
MAT 200k 0.913 ± 0.196 0.405 ± 0.030 0.649 ± 0.341 87.578 ± 15.375 5.25
MAT 2M 0.898 ± 0.165 0.471 ± 0.070 0.655 ± 0.327 81.557 ± 5.088 6.75
MAT 20M 0.854 ± 0.197 0.432 ± 0.034 0.640 ± 0.335 81.797 ± 4.176 5.0
Grover Base 0.917 ± 0.195 0.419 ± 0.029 0.629 ± 0.335 62.266 ± 3.578 3.25
Grover Large 0.950 ± 0.202 0.414 ± 0.041 0.627 ± 0.340 64.941 ± 3.616 2.5
ChemBERTa 1.218 ± 0.245 0.430 ± 0.013 0.647 ± 0.314 177.242 ± 1.819 8.0
MolBERT 1.027 ± 0.244 0.483 ± 0.056 0.633 ± 0.332 177.117 ± 1.799 8.0
Chemprop 1.061 ± 0.168 0.446 ± 0.064 0.628 ± 0.339 74.831 ± 4.792 5.5
Chemprop 2d 1 1.038 ± 0.235 0.454 ± 0.049 0.628 ± 0.336 77.912 ± 10.231 6.0
Chemprop mc 2 0.995 ± 0.136 0.438 ± 0.053 0.627 ± 0.337 75.575 ± 4.683 4.25

1 chemprop with additional rdkit_2d_normalized features generator
2 chemprop with additional morgan_count features generator

Classification

We used ROC AUC as the metric.

model HIA Bioavailability PPBR Tox21 (NR-AR) BBBP Mean rank
MAT 200k 0.943 ± 0.015 0.660 ± 0.052 0.896 ± 0.027 0.775 ± 0.035 0.709 ± 0.022 5.8
MAT 2M 0.941 ± 0.013 0.712 ± 0.076 0.905 ± 0.019 0.779 ± 0.056 0.713 ± 0.022 4.2
MAT 20M 0.935 ± 0.017 0.732 ± 0.082 0.891 ± 0.019 0.779 ± 0.056 0.735 ± 0.006 3.4
Grover Base 0.931 ± 0.021 0.750 ± 0.037 0.901 ± 0.036 0.750 ± 0.085 0.735 ± 0.006 4.0
Grover Large 0.932 ± 0.023 0.747 ± 0.062 0.901 ± 0.033 0.757 ± 0.057 0.757 ± 0.057 4.2
ChemBERTa 0.923 ± 0.032 0.666 ± 0.041 0.869 ± 0.032 0.779 ± 0.044 0.717 ± 0.009 7.0
MolBERT 0.942 ± 0.011 0.737 ± 0.085 0.889 ± 0.039 0.761 ± 0.058 0.742 ± 0.020 4.6
Chemprop 0.924 ± 0.069 0.724 ± 0.064 0.847 ± 0.052 0.766 ± 0.040 0.726 ± 0.008 7.0
Chemprop 2d 0.923 ± 0.015 0.712 ± 0.067 0.874 ± 0.030 0.775 ± 0.041 0.724 ± 0.006 6.8
Chemprop mc 0.924 ± 0.082 0.740 ± 0.060 0.869 ± 0.033 0.772 ± 0.041 0.722 ± 0.008 6.2
Owner
GMUM
Group of Machine Learning Research, Jagiellonian University
GMUM
基于YoloX目标检测+DeepSort算法实现多目标追踪Baseline

项目简介: 使用YOLOX+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。 代码地址(欢迎star): https://github.com/Sharpiless/yolox-deepsort/ 最终效果: 运行demo: python demo

114 Dec 30, 2022
Github project for Attention-guided Temporal Coherent Video Object Matting.

Attention-guided Temporal Coherent Video Object Matting This is the Github project for our paper Attention-guided Temporal Coherent Video Object Matti

71 Dec 19, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
Towards Debiasing NLU Models from Unknown Biases

Towards Debiasing NLU Models from Unknown Biases Abstract: NLU models often exploit biased features to achieve high dataset-specific performance witho

Ubiquitous Knowledge Processing Lab 22 Jun 14, 2022
Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"

AdderNet: Do We Really Need Multiplications in Deep Learning? This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in De

HUAWEI Noah's Ark Lab 915 Jan 01, 2023
(NeurIPS 2021) Realistic Evaluation of Transductive Few-Shot Learning

Realistic evaluation of transductive few-shot learning Introduction This repo contains the code for our NeurIPS 2021 submitted paper "Realistic evalua

Olivier Veilleux 14 Dec 13, 2022
An official implementation of "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation" (CVPR 2021) in PyTorch.

BANA This is the implementation of the paper "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation". For more inf

CV Lab @ Yonsei University 59 Dec 12, 2022
This repository contains the official MATLAB implementation of the TDA method for reverse image filtering

ReverseFilter TDA This repository contains the official MATLAB implementation of the TDA method for reverse image filtering proposed in the paper: "Re

Fergaletto 2 Dec 13, 2021
CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation

CoTr: Efficient 3D Medical Image Segmentation by bridging CNN and Transformer This is the official pytorch implementation of the CoTr: Paper: CoTr: Ef

218 Dec 25, 2022
IhoneyBakFileScan Modify - 批量网站备份文件扫描器,增加文件规则,优化内存占用

ihoneyBakFileScan_Modify 批量网站备份文件泄露扫描工具 2022.2.8 添加、修改内容 增加备份文件fuzz规则 修改备份文件大小判断

VMsec 220 Jan 05, 2023
[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral] By Zhicheng Huang*, Zhaoyang Zeng*, Yupan H

Multimedia Research 196 Dec 13, 2022
PyTorch Implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedding (ORAL, MICCAIW 2021)

Small Lesion Segmentation in Brain MRIs with Subpixel Embedding PyTorch implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedd

22 Oct 21, 2022
Official implementation of Sparse Transformer-based Action Recognition

STAR Official implementation of S parse T ransformer-based A ction R ecognition Dataset download NTU RGB+D 60 action recognition of 2D/3D skeleton fro

Chonghan_Lee 15 Nov 02, 2022
A multi-entity Transformer for multi-agent spatiotemporal modeling.

baller2vec This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotempor

Michael A. Alcorn 56 Nov 15, 2022
Pgn2tex - Scripts to convert pgn files to latex document. Useful to build books or pdf from pgn studies

Pgn2Latex (WIP) A simple script to make pdf from pgn files and studies. It's sti

12 Jul 23, 2022
Checking fibonacci - Generating the Fibonacci sequence is a classic recursive problem

Fibonaaci Series Generating the Fibonacci sequence is a classic recursive proble

Moureen Caroline O 1 Feb 15, 2022
Txt2Xml tool will help you convert from txt COCO format to VOC xml format in Object Detection Problem.

TXT 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Txt2Xml too

Nguyễn Trường Lâu 4 Nov 24, 2022
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.

Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor M

Kevin Lu 1.4k Jan 07, 2023
Official PyTorch implementation of the paper "Graph-based Generative Face Anonymisation with Pose Preservation" in ICIAP 2021

Contents AnonyGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowledgments Citat

Nicola Dall'Asen 10 May 24, 2022