PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.

Overview

PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.

Warning: the master branch might collapse. To obtain similar result in README, you can fall back to this commit, but remembered that some ops were not correctly implemented under that commit. Besides, you'd better use a lower learning rate, 1e-4 would be fine.

How to create CelebA-HQ dataset

I borrowed h5tool.py from official code. To create CelebA-HQ dataset, we have to download the original CelebA dataset, and the additional deltas files from here. After that, run

python2 h5tool.py create_celeba_hq file_name_to_save /path/to/celeba_dataset/ /path/to/celeba_hq_deltas

This is what I used on my laptop

python2 h5tool.py create_celeba_hq /Users/yuan/Downloads/CelebA-HQ /Users/yuan/Downloads/CelebA/Original\ CelebA/ /Users/yuan/Downloads/CelebA/CelebA-HQ-Deltas

I found that MD5 checking were always failed, so I just commented out the MD5 checking part(LN 568 and LN 589)

With default setting, it took 1 day on my server. You can specific num_threads and num_tasks for accleration.

Training from scratch

You have to create CelebA-HQ dataset first, please follow the instructions above.

To obtain the similar results in samples directory, see train_no_tanh.py or train.py scipt for details(with default options). Both should work well. For example, you could run

conda create -n pytorch_p36 python=3.6 h5py matplotlib
source activate pytorch_p36
conda install pytorch torchvision -c pytorch
conda install scipy
pip install tensorflow

#0=first gpu, 1=2nd gpu ,2=3rd gpu etc...
python train.py --gpu 0,1,2 --train_kimg 600 --transition_kimg 600 --beta1 0 --beta2 0.99 --gan lsgan --first_resol 4 --target_resol 256 --no_tanh

train_kimg(transition_kimg) means after seeing train_kimg * 1000(transition_kimg * 1000) real images, switching to fade in(stabilize) phase. Currently only support LSGAN and GAN with --no_noise option, since WGAN-GP is unavailable, --drift option does not affect the result. --no_tanh means do not use tanh at generator's output layer.

If you are Python 2 user, You'd better add this to the top of train.py since I use print('something...', file=f) to write experiment settings to file.

from __future__ import print_function

Tensorboard

tensorboard --logdir='./logs'

Update history

  • Update(20171213): Update data.py, now when fading in, real images are weighted combination of current resolution images and 0.5x resolution images. This weighting trick is similar to the one used in Generator's outputs or Discriminator's inputs. This helps stabilize when fading in.

  • Update(20171129): Add restoration mode. Basides, after many trying, I failed to combine BEGAN and PG-GAN. It's removed from the repository.

  • Update(20171124): Now training with CelebA-HQ dataset. Besides, still failing to introduce progressive growing to BEGAN, even with many modifications.

  • Update(20171121): Introduced progressive growing to BEGAN, see train_began.py script. However, experiments showed that it did not work at this moment. Finding bugs and tuning network structure...

  • Update(20171119): Unstable came from resize_activation function, after replacing repeat by torch.nn.functional.upsample, problem solved. And now I believe that both train.py and train_no_tanh should be stable. Restored from 128x128 stabilize, and continued training, currently at 256x256, phase = fade in, temporary results(first 2 columns on the left were generated, and the other 2 columns were taken from dataset):

  • Update(20171118): Making mistake in resize activation function(repeat is not a right in this function), though it's wrong, it's still effective when resolution<256, but collapsed at resolution>=256. Changing it now, scripts will be updated tomorrow. Sorry for this mistake.

  • Update(20171117): 128x128 fade in results(first 2 columns on the left were generated, and the other 2 columns were taken from dataset):

  • Update(20171116): Adding noise only to RGB images might still collapse. Switching to the same trick as the paper suggested. Besides, the paper used linear as activation of G's output layer, which is reasonable, as I observed in the experiments. Temporary results: 64x64, phase=fade in, the left 4 columns are Generated, and the right 4 columns are from real samples(when fading in, instability might occur, for example, the following results is not so promising, however, as the training goes, it gets better), higher resolution will be available soon.

  • Update(20171115): Mode collapse happened when fading in, debugging... => It turns out that unstable seems to be normal when fading in, after some more iterations, it gets better. Now I'm not using the same noise adding trick as the paper suggested, however, it had been implemented, I will test it and plug it into the network.

  • Update(20171114): First version, seems that the generator tends to generate white image. Debugging now. => Fixed some bugs. Now seems normal, training... => There are some unknown problems when fading in, debugging...

  • Update(20171113): Generator and Discriminator: ok, simple test passed.

  • Update(20171112): It's now under reimplementation.

  • Update(20171111): It's still under implementation. I did not care design the structure, and now I had to reimplement(phase='fade in' is hard to implement under current structure). I also fixed some bugs, since reimplementation is needed, I do not plan to pull requests at this moment.

Reference implementation

Online-compatible Unsupervised Non-resonant Anomaly Detection Repository

Online-compatible Unsupervised Non-resonant Anomaly Detection Repository Repository containing all scripts used in the studies of Online-compatible Un

0 Nov 09, 2021
Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)

Regularizing Generative Adversarial Networks under Limited Data [Project Page][Paper] Implementation for our GAN regularization method. The proposed r

Google 148 Nov 18, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
Code release for the paper “Worldsheet Wrapping the World in a 3D Sheet for View Synthesis from a Single Image”, ICCV 2021.

Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image This repository contains the code for the following paper: R. Hu,

Meta Research 37 Jan 04, 2023
An LSTM for time-series classification

Update 10-April-2017 And now it works with Python3 and Tensorflow 1.1.0 Update 02-Jan-2017 I updated this repo. Now it works with Tensorflow 0.12. In

Rob Romijnders 391 Dec 27, 2022
AWS documentation corpus for zero-shot open-book question answering.

aws-documentation We present the AWS documentation corpus, an open-book QA dataset, which contains 25,175 documents along with 100 matched questions a

Sia Gholami 2 Jul 07, 2022
Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral)

DSA^2 F: Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral) This repo is the official imp

如今我已剑指天涯 46 Dec 21, 2022
A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).

Scalable Incomplete Network Embedding ⠀⠀ A PyTorch implementation of Scalable Incomplete Network Embedding (ICDM 2018). Abstract Attributed network em

Benedek Rozemberczki 69 Sep 22, 2022
🌳 A Python-inspired implementation of the Optimum-Path Forest classifier.

OPFython: A Python-Inspired Optimum-Path Forest Classifier Welcome to OPFython. Note that this implementation relies purely on the standard LibOPF. Th

Gustavo Rosa 30 Jan 04, 2023
TeST: Temporal-Stable Thresholding for Semi-supervised Learning

TeST: Temporal-Stable Thresholding for Semi-supervised Learning TeST Illustration Semi-supervised learning (SSL) offers an effective method for large-

Xiong Weiyu 1 Jul 14, 2022
[SIGMETRICS 2022] One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search paper | website One Proxy Device Is Enough for Hardware-Aware Neural Architec

10 Dec 16, 2022
Vikrant Deshpande 1 Nov 17, 2022
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
Learning Off-Policy with Online Planning, CoRL 2021

LOOP: Learning Off-Policy with Online Planning Accepted in Conference of Robot Learning (CoRL) 2021. Harshit Sikchi, Wenxuan Zhou, David Held Paper In

Harshit Sikchi 24 Nov 22, 2022
HyperCube: Implicit Field Representations of Voxelized 3D Models

HyperCube: Implicit Field Representations of Voxelized 3D Models Authors: Magdalena Proszewska, Marcin Mazur, Tomasz Trzcinski, Przemysław Spurek [Pap

Magdalena Proszewska 3 Mar 09, 2022
Multiple style transfer via variational autoencoder

ST-VAE Multiple style transfer via variational autoencoder By Zhi-Song Liu, Vicky Kalogeiton and Marie-Paule Cani This repo only provides simple testi

13 Oct 29, 2022
In the case of your data having only 1 channel while want to use timm models

timm_custom Description In the case of your data having only 1 channel while want to use timm models (with or without pretrained weights), run the fol

2 Nov 26, 2021
Ray tracing of a Schwarzschild black hole written entirely in TensorFlow.

TensorGeodesic Ray tracing of a Schwarzschild black hole written entirely in TensorFlow. Dependencies: Python 3 TensorFlow 2.x numpy matplotlib About

5 Jan 15, 2022
Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch

Omninet - Pytorch Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch. The authors propose that we should be atte

Phil Wang 48 Nov 21, 2022
Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Learning Domain Invariant Representations in Goal-conditioned Block MDPs Beining Han, Chongyi Zheng, Harris Chan, Keiran Paster, Michael R. Zhang, Jim

Chongyi Zheng 3 Apr 12, 2022