CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching(CVPR2021)

Related tags

Deep LearningCFNet
Overview

CFNet(CVPR 2021)

This is the implementation of the paper CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching, CVPR 2021, Zhelun Shen, Yuchao Dai, Zhibo Rao [Arxiv].

Our method also obtains the 1st place on the stereo task of Robust Vision Challenge 2020

Camera ready version and supplementary Materials can be found in [CVPR official website]

Code has been released.

Abstract

Recently, the ever-increasing capacity of large-scale annotated datasets has led to profound progress in stereo matching. However, most of these successes are limited to a specific dataset and cannot generalize well to other datasets. The main difficulties lie in the large domain differences and unbalanced disparity distribution across a variety of datasets, which greatly limit the real-world applicability of current deep stereo matching models. In this paper, we propose CFNet, a Cascade and Fused cost volume based network to improve the robustness of the stereo matching network. First, we propose a fused cost volume representation to deal with the large domain difference. By fusing multiple low-resolution dense cost volumes to enlarge the receptive field, we can extract robust structural representations for initial disparity estimation. Second, we propose a cascade cost volume representation to alleviate the unbalanced disparity distribution. Specifically, we employ a variance-based uncertainty estimation to adaptively adjust the next stage disparity search space, in this way driving the network progressively prune out the space of unlikely correspondences. By iteratively narrowing down the disparity search space and improving the cost volume resolution, the disparity estimation is gradually refined in a coarse-tofine manner. When trained on the same training images and evaluated on KITTI, ETH3D, and Middlebury datasets with the fixed model parameters and hyperparameters, our proposed method achieves the state-of-the-art overall performance and obtains the 1st place on the stereo task of Robust Vision Challenge 2020.

How to use

Environment

  • python 3.74
  • Pytorch == 1.1.0
  • Numpy == 1.15

Data Preparation

Download Scene Flow Datasets, KITTI 2012, KITTI 2015, ETH3D, Middlebury

KITTI2015/2012 SceneFlow

please place the dataset as described in "./filenames", i.e., "./filenames/sceneflow_train.txt", "./filenames/sceneflow_test.txt", "./filenames/kitticombine.txt"

Middlebury/ETH3D

Our folder structure is as follows:

dataset
├── KITTI2015
├── KITTI2012
├── Middlebury
    │ ├── Adirondack
    │   ├── im0.png
    │   ├── im1.png
    │   └── disp0GT.pfm
├── ETH3D
    │ ├── delivery_area_1l
    │   ├── im0.png
    │   ├── im1.png
    │   └── disp0GT.pfm

Note that we use the full-resolution image of Middlebury for training as the additional training images don't have half-resolution version. We will down-sample the input image to half-resolution in the data argumentation. In contrast, we use the half-resolution image and full-resolution disparity of Middlebury for testing.

Training

Scene Flow Datasets Pretraining

run the script ./scripts/sceneflow.sh to pre-train on Scene Flow datsets. Please update DATAPATH in the bash file as your training data path.

To repeat our pretraining details. You may need to replace the Mish activation function to Relu. Samples is shown in ./models/relu/.

Finetuning

run the script ./scripts/robust.sh to jointly finetune the pre-train model on four datasets, i.e., KITTI 2015, KITTI2012, ETH3D, and Middlebury. Please update DATAPATH and --loadckpt as your training data path and pretrained SceneFlow checkpoint file.

Evaluation

Joint Generalization

run the script ./scripts/eth3d_save.sh", ./scripts/mid_save.sh" and ./scripts/kitti15_save.sh to save png predictions on the test set of the ETH3D, Middlebury, and KITTI2015 datasets. Note that you may need to update the storage path of save_disp.py, i.e., fn = os.path.join("/home3/raozhibo/jack/shenzhelun/cfnet/pre_picture/", fn.split('/')[-2]).

Corss-domain Generalization

run the script ./scripts/robust_test.sh" to test the cross-domain generalizaiton of the model (Table.3 of the main paper). Please update --loadckpt as pretrained SceneFlow checkpoint file.

Pretrained Models

Pretraining Model You can use this checkpoint to reproduce the result we reported in Table.3 of the main paper

Finetuneing Moel You can use this checkpoint to reproduce the result we reported in the stereo task of Robust Vision Challenge 2020

Citation

If you find this code useful in your research, please cite:

@InProceedings{Shen_2021_CVPR,
    author    = {Shen, Zhelun and Dai, Yuchao and Rao, Zhibo},
    title     = {CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {13906-13915}
}

Acknowledgements

Thanks to the excellent work GWCNet, Deeppruner, and HSMNet. Our work is inspired by these work and part of codes are migrated from GWCNet, DeepPruner and HSMNet.

Official codes: Self-Supervised Learning by Estimating Twin Class Distribution

TWIST: Self-Supervised Learning by Estimating Twin Class Distributions Codes and pretrained models for TWIST: @article{wang2021self, title={Self-Sup

Bytedance Inc. 85 Dec 15, 2022
The spiritual successor to knockknock for PyTorch Lightning, get notified when your training ends

Who's there? The spiritual successor to knockknock for PyTorch Lightning, to get a notification when your training is complete or when it crashes duri

twsl 70 Oct 06, 2022
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"

Do Not Trust Prediction Scores for Membership Inference Attacks Abstract: Membership inference attacks (MIAs) aim to determine whether a specific samp

<a href=[email protected]"> 3 Oct 25, 2022
Code for the paper "Multi-task problems are not multi-objective"

Multi-Task problems are not multi-objective This is the code for the paper "Multi-Task problems are not multi-objective" in which we show that the com

Michael Ruchte 5 Aug 19, 2022
Bootstrapped Unsupervised Sentence Representation Learning (ACL 2021)

Install first pip3 install -e . Training python3 training/unsupervised_tuning.py python3 training/supervised_tuning.py python3 training/multilingual_

yanzhang_nlp 26 Jul 22, 2022
NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions Overview NUANCED is a user-centric conversational recommen

Facebook Research 18 Dec 28, 2021
A PyTorch Image-Classification With AlexNet And ResNet50.

PyTorch 图像分类 依赖库的下载与安装 在终端中执行 pip install -r -requirements.txt 完成项目依赖库的安装 使用方式 数据集的准备 STL10 数据集 下载:STL-10 Dataset 存储位置:将下载后的数据集中 train_X.bin,train_y.b

FYH 4 Feb 22, 2022
Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Mahmoud Afifi 22 Nov 08, 2022
TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data

A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, whi

KAIST Data Mining Lab 8 Dec 07, 2022
Code & Data for Enhancing Photorealism Enhancement

Code & Data for Enhancing Photorealism Enhancement

Intel ISL (Intel Intelligent Systems Lab) 1.1k Jan 08, 2023
PyTorch code for the paper "FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras"

FIERY This is the PyTorch implementation for inference and training of the future prediction bird's-eye view network as described in: FIERY: Future In

Wayve 406 Dec 24, 2022
Data pipelines for both TensorFlow and PyTorch!

rapidnlp-datasets Data pipelines for both TensorFlow and PyTorch ! If you want to load public datasets, try: tensorflow/datasets huggingface/datasets

1 Dec 08, 2021
Pyramid Scene Parsing Network, CVPR2017.

Pyramid Scene Parsing Network by Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, Jiaya Jia, details are in project page. Introduction This

Hengshuang Zhao 1.5k Jan 05, 2023
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation mode

Aiden Nibali 36 Oct 30, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer This repository contains code to compute depth from a

Intelligent Systems Lab Org 2.3k Jan 01, 2023
aka "Bayesian Methods for Hackers": An introduction to Bayesian methods + probabilistic programming with a computation/understanding-first, mathematics-second point of view. All in pure Python ;)

Bayesian Methods for Hackers Using Python and PyMC The Bayesian method is the natural approach to inference, yet it is hidden from readers behind chap

Cameron Davidson-Pilon 25.1k Jan 02, 2023
PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition

PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition The unofficial code of CDistNet. Now, we ha

25 Jul 20, 2022
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

flow-dev 2 Aug 21, 2022