Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"

Overview

Do Not Trust Prediction Scores for Membership Inference Attacks

False-Positive Examples

Abstract: Membership inference attacks (MIAs) aim to determine whether a specific sample was used to train a predictive model. Knowing this may indeed lead to a privacy breach. Arguably, most MIAs, however, make use of the model's prediction scores---the probability of each output given some input---following the intuition that the trained model tends to behave differently on its training data. We argue that this is a fallacy for many modern deep network architectures, e.g., ReLU type neural networks produce almost always high prediction scores far away from the training data. Consequently, MIAs will miserably fail since this behavior leads to high false-positive rates not only on known domains but also on out-of-distribution data and implicitly acts as a defense against MIAs. Specifically, using generative adversarial networks, we are able to produce a potentially infinite number of samples falsely classified as part of the training data. In other words, the threat of MIAs is overestimated and less information is leaked than previously assumed. Moreover, there is actually a trade-off between the overconfidence of classifiers and their susceptibility to MIAs: the more classifiers know when they do not know, making low confidence predictions far away from the training data, the more they reveal the training data.
Arxiv Preprint (PDF)

Membership Inference Attacks

Membership Inference Attacks


Membership Inference Attack Preparation Process

In a general MIA setting, as usually assumed in the literature, an adversary is given an input x following distribution D and a target model which was trained on a training set with size S_train consisting of samples from D. The adversary is then facing the problem to identify whether a given x following D was part of the training set S_train. To predict the membership of x, the adversary creates an inference model h. In score-based MIAs, the input to h is the prediction score vector produced by the target model on sample x (see first figure above). Since MIAs are binary classification problems, precision, recall and false-positive rate (FPR) are used as attack evaluation metrics.

All MIAs exploit a difference in the behavior of the target model on seen and unseen data. Most attacks in the literature follow Shokri et al. and train so-called shadow models shadow models on a disjoint dataset S_shadow drawn from the same distribution D as S_train. The shadow model is used to mimic the behavior of the target model and adjust parameters of h, such as threshold values or model weights. Note that the membership status for inputs to the shadow models are known to the adversary (see second figure above).

Setup and Run Experiments

Setup StyleGAN2-ADA

To recreate our Fake datasets containing synthetic CIFAR-10 and Stanford Dog images, you need to clone the official StyleGAN-2-Pytorch repo into the folder datasets.

cd datasets
git clone https://github.com/NVlabs/stylegan2-ada-pytorch.git
rm -r --force stylegan2-ada-pytorch/.git/

You can also safely remove all folders in the /datasets/stylegan2-ada-pytorch folder but /dnnlib and /torch_utils.

Setup Docker Container

To build the Docker container run the following script:

./docker_build.sh -n confidence_mi

To start the docker container run the following command from the project's root:

docker run --rm --shm-size 16G --name my_confidence_mi --gpus '"device=0"' -v $(pwd):/workspace/confidences -it confidence_mi bash

Download Trained Models

We provide our trained models on which we performed our experiments. To automatically download and extract the files use the following command:

bash download_pretrained_models.sh

To manually download single models, please visit https://hessenbox.tu-darmstadt.de/getlink/fiBg5znMtAagRe58sCrrLtyg/pretrained_models.

Reproduce Results from the Paper

All our experiments based on CIFAR-10 and Stanford Dogs can be reproduced using the pre-trained models by running the following scripts:

python experiments/cifar10_experiments.py
python experiments/stanford_dogs_experiments.py

If you want to train the models from scratch, the following commands can be used:

python experiments/cifar10_experiments.py --train
python experiments/stanford_dogs_experiments.py --train --pretrained

We use command line arguments to specify the hyperparameters of the training and attacking process. Default values correspond to the parameters used for training the target models as stated in the paper. The same applies for the membership inference attacks. To train models with label smoothing, L2 or LLLA, run the experiments with --label_smoothing, --weight_decay or --llla. We set the seed to 42 (default value) for all experiments. For further command line arguments and details, please refer to the python files.

Attack results will be stored in csv files at /experiments/results/{MODEL_ARCH}_{DATASET_NAME}_{MODIFIERS}_attack_results.csv and state precision, recall, fpr and mmps values for the various input datasets and membership inference attacks. Results for training the target and shadow models will be stored in the first column at /experiments/results/{MODEL_ARCH}_{DATASET_NAME}_{MODIFIERS}_performance_results.csv. They state the training and test accuracy, as well as the ECE.

Datasets

All data is required to be located in /data/. To recreate the Fake datasets using StyleGAN2-ADA to generate CIFAR-10 and dog samples, use /datasets/fake_cifar10.py and /datasets/fake_dogs.py. For example, Fake Dogs samples are located at /data/fake_afhq_dogs/Images after generation. If the files are missing or corrupted (checked by MD5 checksum), the images will be regenerated to restore the identical datasets used in the paper. This process will be automatically called when running one of the experiments. We use various datasets in our experiments. The following figure gives a short overview over the content and visual styles of the datasets.

Membership Inference Attacks

Citation

If you build upon our work, please don't forget to cite us.

@misc{hintersdorf2021trust,
      title={Do Not Trust Prediction Scores for Membership Inference Attacks}, 
      author={Dominik Hintersdorf and Lukas Struppek and Kristian Kersting},
      year={2021},
      eprint={2111.09076},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Implementation Credits

Some of our implementations rely on other repos. We want to thank the authors for making their code publicly available. For license details refer to the corresponding files in our repo. For more details on the specific functionality, please visit the corresponding repos.

Owner
[email protected]
Machine Learning Group at TU Darmstadt
<a href=[email protected]">
This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

9 Sep 01, 2022
A repository for generating stylized talking 3D and 3D face

style_avatar A repository for generating stylized talking 3D faces and 2D videos. This is the repository for paper Imitating Arbitrary Talking Style f

Haozhe Wu 191 Dec 22, 2022
AI-generated-characters for Learning and Wellbeing

AI-generated-characters for Learning and Wellbeing Click here for the full project page. This repository contains the source code for the paper AI-gen

MIT Media Lab 214 Jan 01, 2023
Production First and Production Ready End-to-End Speech Recognition Toolkit

WeNet δΈ­ζ–‡η‰ˆ Discussions | Docs | Papers | Runtime (x86) | Runtime (android) | Pretrained Models We share neural Net together. The main motivation of WeN

2.7k Jan 04, 2023
Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.

Deep-Unsupervised-Domain-Adaptation Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E.

Alan Grijalva 49 Dec 20, 2022
A PyTorch Lightning solution to training OpenAI's CLIP from scratch.

train-CLIP πŸ“Ž A PyTorch Lightning solution to training CLIP from scratch. Goal ⚽ Our aim is to create an easy to use Lightning implementation of OpenA

Cade Gordon 396 Dec 30, 2022
The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network.

UNet-SIDE The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network. For Super Reso

TIANTIAN XU 1 Jan 13, 2022
Library for converting from RGB / GrayScale image to base64 and back.

Library for converting RGB / Grayscale numpy images from to base64 and back. Installation pip install -U image_to_base_64 Conversion RGB to base 64 b

Vladimir Iglovikov 16 Aug 28, 2022
Process text, including tokenizing and representing sentences as vectors and Applying some concepts like RNN, LSTM and GRU to create a classifier can detect the language in which a sentence is written from among 17 languages.

Language Identifier What is this ? The goal of this project is to create a model that is able to predict a given sentence language through text proces

Hossam Asaad 9 Dec 15, 2022
An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022

Dual Correlation Reduction Network An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022. Any

yueliu1999 109 Dec 23, 2022
Official Code Release for Container : Context Aggregation Network

Container: Context Aggregation Network Official Code Release for Container : Context Aggregation Network Comparion between CNN, MLP-Mixer and Transfor

peng gao 42 Nov 17, 2021
Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces

This repository contains source code for the paper Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces a

9 Nov 21, 2022
WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction"

BiRTE WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction" Requirements The main requirements are: py

9 Dec 27, 2022
PyTorch Personal Trainer: My framework for deep learning experiments

Alex's PyTorch Personal Trainer (ptpt) (name subject to change) This repository contains my personal lightweight framework for deep learning projects

Alex McKinney 8 Jul 14, 2022
Classification models 1D Zoo - Keras and TF.Keras

Classification models 1D Zoo - Keras and TF.Keras This repository contains 1D variants of popular CNN models for classification like ResNets, DenseNet

Roman Solovyev 12 Jan 06, 2023
Deep functional residue identification

DeepFRI Deep functional residue identification Citing @article {Gligorijevic2019, author = {Gligorijevic, Vladimir and Renfrew, P. Douglas and Koscio

Flatiron Institute 156 Dec 25, 2022
Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020

Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020 BibTeX @INPROCEEDINGS{punnappurath2020modeling, author={Abhi

Abhijith Punnappurath 22 Oct 01, 2022
Apply a perspective transformation to a raster image inside Inkscape (no need to use an external software such as GIMP or Krita).

Raster Perspective Apply a perspective transformation to bitmap image using the selected path as envelope, without the need to use an external softwar

s.ouchene 19 Dec 22, 2022
Joint parameterization and fitting of stroke clusters

StrokeStrip: Joint Parameterization and Fitting of Stroke Clusters Dave Pagurek van Mossel1, Chenxi Liu1, Nicholas Vining1,2, Mikhail Bessmeltsev3, Al

Dave Pagurek 44 Dec 01, 2022
PyTorch implementation of 'Gen-LaneNet: a generalized and scalable approach for 3D lane detection'

(pytorch) Gen-LaneNet: a generalized and scalable approach for 3D lane detection Introduction This is a pytorch implementation of Gen-LaneNet, which p

Yuliang Guo 233 Jan 06, 2023