Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Overview

Awesome Few-Shot Object Detection (FSOD)

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Maintainers: Gabriel Huang

For an introduction to the few-shot object detection framework read below, or check our our survey on few-shot and self-supervised object detection and its project page for full explanations, discussions on the pitfalls of the Pascal, COCO, and LVIS benchmarks used below, main takeaways and future research directions.

Contributing

If you want to add your paper or report a mistake, please create a pull request with all supporting information. Thanks!

Pascal VOC and MS COCO FSOD Leaderboard

In this table we distinguish Kang's Splits (Meta-YOLO) from TFA's splits (Frustratingly Simple FSOD), as the Kang splits have been shown to have high variance and overestimate performance for low number of shots (see for yourself -- check the difference between TFA 1-shot and Kang 1-shot in the table below).

Name Type VOC TFA 1-shot (mAP50) VOC TFA 3-shot (mAP50) VOC TFA 10-shot (mAP50) VOC Kang 1-shot (mAP50) VOC Kang 3-shot (mAP50) VOC Kang 10-shot (mAP50) MS COCO 10-shot (mAP) MS COCO 30-shot (mAP)
LSTD finetuning - - - 8.2 12.4 38.5 - -
RepMet prototype - - - 26.1 34.4 41.3 - -
Meta-YOLO modulation 14.2 29.8 - 14.8 26.7 47.2 5.6 9.1
MetaDet modulation - - - 18.9 30.2 49.6 7.1 11.3
Meta-RCNN modulation - - - 19.9 35.0 51.5 8.7 12.4
Faster RCNN+FT finetuning 9.9 21.6 35.6 15.2 29.0 45.5 9.2 12.5
ACM-MetaRCNN modulation - - - 31.9 35.9 53.1 9.4 12.8
TFA w/fc finetuning 22.9 40.4 52.0 36.8 43.6 57.0 10.0 13.4
TFA w/cos finetuning 25.3 42.1 52.8 39.8 44.7 56.0 10.0 13.7
Retentive RCNN finetuning - - - 42.0 46.0 56.0 10.5 13.8
MPSR finetuning - - - 41.7 51.4 61.8 9.8 14.1
Attention-FSOD modulation - - - - - - 12.0 -
FsDetView finetuning 24.2 42.2 57.4 - - - 12.5 14.7
CME finetuning - - - 41.5 50.4 60.9 15.1 16.9
TIP add-on 27.7 43.3 59.6 - - - 16.3 18.3
DAnA modulation - - - - - - 18.6 21.6
DeFRCN prototype - - - 53.6 61.5 60.8 18.5 22.6
Meta-DETR modulation 20.4 46.6 57.8 - - - 17.8 22.9
DETReg finetuning - - - - - - 18.0 30.0

Few-Shot Object Detection Explained

We explain the few-shot object detection framework as defined by the Meta-YOLO paper (Kang's splits - full details here). FSOD partitions objects into two disjoint sets of categories: base or known/source classes, which are object categories for which we have access to a large number of training examples; and novel or unseen/target classes, for which we have only a few training examples (shots) per class. The FSOD task is formalized into the following steps:

  • 1. Base training.¹ Annotations are given only for the base classes, with a large number of training examples per class (bikes in the example). We train the FSOD method on the base classes.
  • 2. Few-shot finetuning. Annotations are given for the support set, a very small number of training examples from both the base and novel classes (one bike and one human in the example). Most methods finetune the FSOD model on the support set, but some methods might only use the support set for conditioning during evaluation (finetuning-free methods).
  • 3. Few-shot evaluation. We evaluate the FSOD to jointly detect base and novel classes from the test set (few-shot refers to the size of the support set). The performance metrics are reported separately for base and novel classes. Common evaluation metrics are variants of the mean average precision: mAP50 for Pascal and COCO-style mAP for COCO. They are often denoted bAP50, bAP75, bAP (resp. nAP50, nAP75, nAP) for the base and novel classes respectively, where the number is the IoU-threshold in percentage.

In pure FSOD, methods are usually compared solely on the basis of novel class performance, whereas in Generalized FSOD, methods are compared on both base and novel class performances [2]. Note that "training" and "test" set refer to the splits used in traditional object detection. Base and novel classes are typically present in both the training and testing sets; however, the novel class annotations are filtered out from the training set during base training; during few-shot finetuning, the support set is typically taken to be a (fixed) subset of the training set; during few-shot evaluation, all of the test set is used to reduce uncertainty [1].

For conditioning-based methods with no finetuning, few-shot finetuning and few-shot evaluation are merged into a single step; the novel examples are used as support examples to condition the model, and predictions are made directly on the test set. In practice, the majority of conditioning-based methods reviewed in this survey do benefit from some form of finetuning.

*¹In the context of self-supervised learning, base-training may also be referred to as finetuning or training. This should not be confused with base training in the meta-learning framework; rather this is similar to the meta-training phase [3].

Owner
Gabriel Huang
PhD student at MILA
Gabriel Huang
Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis"

Beyond the Spectrum Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis" by Yang He, Ning Yu, Margret Keu

Yang He 27 Jan 07, 2023
Make a Turtlebot3 follow a figure 8 trajectory and create a robot arm and make it follow a trajectory

HW2 - ME 495 Overview Part 1: Makes the robot move in a figure 8 shape. The robot starts moving when launched on a real turtlebot3 and can be paused a

Devesh Bhura 0 Oct 21, 2022
Implementation of the famous Image Manipulation\Forgery Detector "ManTraNet" in Pytorch

Who has never met a forged picture on the web ? No one ! Everyday we are constantly facing fake pictures touched up in Photoshop but it is not always

Rony Abecidan 77 Dec 16, 2022
Yolov5-lite - Minimal PyTorch implementation of YOLOv5

Yolov5-Lite: Minimal YOLOv5 + Deep Sort Overview This repo is a shortened versio

Kadir Nar 57 Nov 28, 2022
An expansion for RDKit to read all types of files in one line

RDMolReader An expansion for RDKit to read all types of files in one line How to use? Add this single .py file to your project and import MolFromFile(

Ali Khodabandehlou 1 Dec 18, 2021
TensorFlow-based implementation of "Pyramid Scene Parsing Network".

PSPNet_tensorflow Important Code is fine for inference. However, the training code is just for reference and might be only used for fine-tuning. If yo

HsuanKung Yang 323 Dec 20, 2022
Import Python modules from dicts and JSON formatted documents.

Paker Paker is module for importing Python packages/modules from dictionaries and JSON formatted documents. It was inspired by httpimporter. Important

Wojciech Wentland 1 Sep 07, 2022
Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting

Pytorch Pedestrian Attribute Recognition: A strong PyTorch baseline of pedestrian attribute recognition and multi-label classification.

Jian 79 Dec 18, 2022
Temporal Segment Networks (TSN) in PyTorch

TSN-Pytorch We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation for TSN as well as oth

1k Jan 03, 2023
ObjectDetNet is an easy, flexible, open-source object detection framework

Getting started with the ObjectDetNet ObjectDetNet is an easy, flexible, open-source object detection framework which allows you to easily train, resu

5 Aug 25, 2020
Xview3 solution - XView3 challenge, 2nd place solution

Xview3, 2nd place solution https://iuu.xview.us/ test split aggregate score publ

Selim Seferbekov 24 Nov 23, 2022
A curated list of awesome resources combining Transformers with Neural Architecture Search

A curated list of awesome resources combining Transformers with Neural Architecture Search

Yash Mehta 173 Jan 03, 2023
Mememoji - A facial expression classification system that recognizes 6 basic emotions: happy, sad, surprise, fear, anger and neutral.

a project built with deep convolutional neural network and ❤️ Table of Contents Motivation The Database The Model 3.1 Input Layer 3.2 Convolutional La

Jostine Ho 761 Dec 05, 2022
Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

61 Jan 07, 2023
Federated Learning Based on Dynamic Regularization

Federated Learning Based on Dynamic Regularization This is implementation of Federated Learning Based on Dynamic Regularization. Requirements Please i

39 Jan 07, 2023
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
Making Structure-from-Motion (COLMAP) more robust to symmetries and duplicated structures

SfM disambiguation with COLMAP About Structure-from-Motion generally fails when the scene exhibits symmetries and duplicated structures. In this repos

Computer Vision and Geometry Lab 193 Dec 26, 2022
A repository for interferometer controller code.

dses-interferometer-controller A repository for interferometer controller code, hardware, and simulations. See dses.science for more information on th

Eli Reed 1 Jan 17, 2022
This is a repository with the code for the ACL 2019 paper

The Story of Heads This is the official repo for the following papers: (ACL 2019) Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy

231 Nov 15, 2022
A set of tests for evaluating large-scale algorithms for Wasserstein-2 transport maps computation.

Continuous Wasserstein-2 Benchmark This is the official Python implementation of the NeurIPS 2021 paper Do Neural Optimal Transport Solvers Work? A Co

Alexander 22 Dec 12, 2022