Code for CVPR 2018 paper --- Texture Mapping for 3D Reconstruction with RGB-D Sensor

Overview

G2LTex

This repository contains the implementation of "Texture Mapping for 3D Reconstruction with RGB-D Sensor (CVPR2018)" based on mvs-texturing. Due to the agreement with other company, some parts can only be released in the form of .so files. More information and the paper can be found on our group website and Qingan's homepage.

Publication

If you find this code useful for your research, please cite our work:

Yanping Fu, Qingan Yan, Long Yang, Jie Liao, Chunxia Xiao. Texture Mapping for 3D Reconstruction with RGB-D Sensor. In CVPR. 2018.

@inproceedings{fu2018texture,
  title={Texture Mapping for 3D Reconstruction with RGB-D Sensor},
  author={Fu, Yanping and Yan, Qingan and Yang, Long and Liao, Jie and Xiao, Chunxia},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  pages={4645--4653},
  year={2018},
  organization={IEEE}
}

How to use

1. Run

To test our algorithm. run G2LTex in command line:

./bin/G2LTex [DIR] [PLY] 

Params explanation: -PLY: The reconstructed model for texture mapping. -DIR: The texture image directory, include rgb images, depth images, and camera trajectory.

The parameters of the camera and the system can be set in the config file.

Config/config.yml

How to install and run this code.

git clone https://github.com/fdp0525/G2LTex.git
cd G2LTex/bin
./G2LTex ../Data/bloster/textureimages ../Data/bloster/bloster.ply

We need to modify the configuration file config.yml before running the other datasets.

./G2LTex ../Data/apt0/apt0 ../Data/apt0/apt0.ply

2. Input Format

  • Color frames (color_XX.jpg): RGB, 24-bit, JPG.
  • Depth frames (depth_XX.png): depth (mm), 16-bit, PNG (invalid depth is set to 0).
  • Camera poses (color_XX.cam): world-to-camera [tx, ty, tz, R00, R01, R02, R10, R11, R12, R20, R21, R22].

3. Dependencies

The code has following prerequisites:

  • ubuntu 16.04
  • gcc (5.4.0)
  • OpenCV (2.4.10)
  • Eigen (>3.0)
  • png12
  • jpeg

4. Parameters

All the parameters can be set in the file Config/config.yml as follows:

%YAML:1.0
depth_fx: 540.69
depth_fy: 540.69
depth_cx: 479.75
depth_cy: 269.75
depth_width: 960
depth_height: 540

RGB_fx: 1081.37
RGB_fy: 1081.37
RGB_cx: 959.5
RGB_cy: 539.5
RGB_width: 1920
RGB_height: 1080
.
.
.

5. Results

Some precomputed results can be found in the folder results/.

Owner
Fu Yanping(付燕平)
Fu Yanping(付燕平)
DNA sequence classification by Deep Neural Network

DNA sequence classification by Deep Neural Network: Project Overview worked on the DNA sequence classification problem where the input is the DNA sequ

Mohammed Jawwadul Islam Fida 0 Aug 02, 2022
Transformer model implemented with Pytorch

transformer-pytorch Transformer model implemented with Pytorch Attention is all you need-[Paper] Architecture Self-Attention self_attention.py class

Mingu Kang 12 Sep 03, 2022
Learning to Simulate Dynamic Environments with GameGAN (CVPR 2020)

Learning to Simulate Dynamic Environments with GameGAN PyTorch code for GameGAN Learning to Simulate Dynamic Environments with GameGAN Seung Wook Kim,

199 Dec 26, 2022
Python implementation of O-OFDMNet, a deep learning-based optical OFDM system,

O-OFDMNet This includes Python implementation of O-OFDMNet, a deep learning-based optical OFDM system, which uses neural networks for signal processin

Thien Luong 4 Sep 09, 2022
Graph Attention Networks

GAT Graph Attention Networks (Veličković et al., ICLR 2018): https://arxiv.org/abs/1710.10903 GAT layer t-SNE + Attention coefficients on Cora Overvie

Petar Veličković 2.6k Jan 05, 2023
ARAE-Tensorflow for Discrete Sequences (Adversarially Regularized Autoencoder)

ARAE Tensorflow Code Code for the paper Adversarially Regularized Autoencoders for Generating Discrete Structures by Zhao, Kim, Zhang, Rush and LeCun

19 Nov 12, 2021
Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Mahmoud Afifi 22 Nov 08, 2022
G-NIA model from "Single Node Injection Attack against Graph Neural Networks" (CIKM 2021)

Single Node Injection Attack against Graph Neural Networks This repository is our Pytorch implementation of our paper: Single Node Injection Attack ag

Shuchang Tao 18 Nov 21, 2022
Spam your friends and famly and when you do your famly will disown you and you will have no friends.

SpamBot9000 Spam your friends and family and when you do your family will disown you and you will have no friends. Terms of Use Disclaimer: Please onl

DJ15 0 Jun 09, 2022
Finetune alexnet with tensorflow - Code for finetuning AlexNet in TensorFlow >= 1.2rc0

Finetune AlexNet with Tensorflow Update 15.06.2016 I revised the entire code base to work with the new input pipeline coming with TensorFlow = versio

Frederik Kratzert 766 Jan 04, 2023
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
Face Recognition and Emotion Detector Device

Face Recognition and Emotion Detector Device Orange PI 1 Python 3.10.0 + Django 3.2.9 Project's file explanation Django manage.py Django commands hand

BootyAss 2 Dec 21, 2021
MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network

MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network This repository is the official implementation of MatchGAN: A S

Justin Sun 12 Dec 27, 2022
ECCV2020 paper: Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code and Data.

This repo contains some of the codes for the following paper Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code

Xuewen Yang 56 Dec 08, 2022
Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS of first stage is 3.42 and second stage is 3.47.

SDDNet Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS

Cyril Lv 43 Nov 21, 2022
Official code release for: EditGAN: High-Precision Semantic Image Editing

Official code release for: EditGAN: High-Precision Semantic Image Editing

565 Jan 05, 2023
NeurIPS 2021 paper 'Representation Learning on Spatial Networks' code

Representation Learning on Spatial Networks This repository is the official implementation of Representation Learning on Spatial Networks. Training Ex

13 Dec 29, 2022
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
💡 Learnergy is a Python library for energy-based machine learning models.

Learnergy: Energy-based Machine Learners Welcome to Learnergy. Did you ever reach a bottleneck in your computational experiments? Are you tired of imp

Gustavo Rosa 57 Nov 17, 2022
Python Implementation of the CoronaWarnApp (CWA) Event Registration

Python implementation of the Corona-Warn-App (CWA) Event Registration This is an implementation of the Protocol used to generate event and location QR

MaZderMind 17 Oct 05, 2022