Repository for MeshTalk supplemental material and code once the (already approved) 16 GHS captures our lab will make publicly available are released.

Related tags

Deep Learningmeshtalk
Overview

meshtalk

This repository contains code to run MeshTalk for face animation from audio. If you use MeshTalk, please cite

@inproceedings{richard2021meshtalk,
    author    = {Richard, Alexander and Zollh\"ofer, Michael and Wen, Yandong and de la Torre, Fernando and Sheikh, Yaser},
    title     = {MeshTalk: 3D Face Animation From Speech Using Cross-Modality Disentanglement},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {1173-1182}
}

Supplemental Material

Watch the video

Running MeshTalk

Dependencies

ffmpeg
numpy
torch         (tested with v1.10.0)
pytorch3d     (tested with v0.4.0)
torchaudio    (tested with v0.10.0)

Animating a Face Mesh from Audio

Download the pretrained models and unzip them. Make sure your python path contains the root directory (export PYTHONPATH=<your_meshtalk_root_directory>).

Then, run

python animate_face.py --model_dir <your_pretrained_model_dir> --audio_file <your_speech_snippet.wav> --output <your_output_file.mp4>

See a description of command line arguments via python animate_face.py --help. We provide a neutral face template mesh in assets/face_template.obj. Note that the rendered results look slightly different than in the paper and supplemental video because we use a differnt (open source) rendering engine in this repository.

Training your own MeshTalk version

We are in the process of releasing high-quality 3D face captures of 16 subjects (a subset of the dataset used in this paper). We will link to the dataset here once it is available.

License

The code and dataset are released under CC-NC 4.0 International license.

Comments
  • Can I change the OBJ model?

    Can I change the OBJ model?

    If I want to change an OBJ face, what are the requirements? Or is there a template for the face you use? Then you can create many faces through the template. I read other issues and learned that not all OBJ can be used. Does the number of vertices of the mesh need to be the same? Does the face size need to be the same?

    This is a cool project.

    opened by ALIENMINT 6
  • asset files creation

    asset files creation

    Hi, I ran the custom audio expressions on your neutral mesh object and it ran well. I wanted to run the audio on my own custom (model)object files. I have created the object files for my person model. For this how do I generate the asset files - face_mean.npy, face_std forehead_mask and neck mask files? Are these files generated for the object file, or am i supposed to resize the object file to the 6172 dimension in order to use with the existing asset files? Thank you for your help in advance.

    opened by programmeddeath1 6
  • new obj

    new obj

    i have a new obj file with 6172 points from the default obj file, Q1:what is the meaning of the file face_mean and face_std and the two txt with smoothing ? Is the middle face and the hyperbole face ? Q2: how to make the face_mean and face_std and the smooth txt file?

    opened by luoww1992 5
  • Training parameters

    Training parameters

    Hello,

    I am trying to train MeshTalk on the VOCA dataset, however, the loss value explodes if I use a learning rate 1e-4 or higher, and keeps oscillating in the range of 0.2 if I use a lower learning rate (this does not lead to realistic results). I was wondering what training parameters were used in the paper?

    I am using the following parameters: no. of frames, T = 128 optimizer SGD with lr=9e-5 (at the moment), momentum=0.9, nesterov=True M_upper = 5 and M_lower = 5 batch_size = 16

    Thanks for any help!

    opened by UttaranB127 5
  • mesh faces missing for multiface

    mesh faces missing for multiface

    The mesh graph (.obj) multiface provided has almost 2000 faces less than the mesh by meshtalk (.obj). I wonder how to cope with it. Should I do some remeshing work to connect the isolated vertices together?

    opened by songtoy 4
  • How to use diffrent obj model?

    How to use diffrent obj model?

    Incredible work!Thanks! I have a question on using diffrent obj model. I tried to use obj model file created by deca, but meet a error:

    (meshtalk) [email protected]:/data/cx/GANs/meshtalk$ python animate_face.py --model_dir weights/pretrained_models --audio_file test.wav --output outputs --face_template myasset/mzd.obj /home/ubuntu/.local/lib/python3.8/site-packages/torchaudio/backend/utils.py:53: UserWarning: "sox" backend is being deprecated. The default backend will be changed to "sox_io" backend in 0.8.0 and "sox" backend will be removed in 0.9.0. Please migrate to "sox_io" backend. Please refer to https://github.com/pytorch/audio/issues/903 for the detail. warnings.warn( load assets... load models... Loaded: weights/pretrained_models/vertex_unet.pkl Loaded: weights/pretrained_models/context_model.pkl Loaded: weights/pretrained_models/encoder.pkl animate face mesh... /home/ubuntu/.local/lib/python3.8/site-packages/torch/functional.py:515: UserWarning: stft will require the return_complex parameter be explicitly specified in a future PyTorch release. Use return_complex=False to preserve the current behavior or return_complex=True to return a complex output. (Triggered internally at /pytorch/aten/src/ATen/native/SpectralOps.cpp:653.) return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore /home/ubuntu/.local/lib/python3.8/site-packages/torch/functional.py:515: UserWarning: The function torch.rfft is deprecated and will be removed in a future PyTorch release. Use the new torch.fft module functions, instead, by importing torch.fft and calling torch.fft.fft or torch.fft.rfft. (Triggered internally at /pytorch/aten/src/ATen/native/SpectralOps.cpp:590.) return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore Traceback (most recent call last): File "animate_face.py", line 93, in geom = template_verts.cuda().view(1, 1, 6172, 3).expand(-1, T, -1, -1).contiguous() RuntimeError: shape '[1, 1, 6172, 3]' is invalid for input of size 15069

    What should I do if I want to animate different obj files?

    opened by AdamMayor2018 4
  • Different topology from multiface dataset?

    Different topology from multiface dataset?

    I find that the number of vertices from your given template object is different from what I downloaded from multiface dataset. Especially the details of the mouth are quite different, would you please share more information about the experiments?

    opened by chenerg 3
  • Context model - how to train?

    Context model - how to train?

    Hello,

    How to train the autoregressive model for inference? In the forward function, what would be the first expression_one_hot tensor? I understand subsequent inputs would be the labels output of previous timestep.

    `def forward(self, expression_one_hot: th.Tensor, audio_code: th.Tensor):

       x = self.embedding(expression_one_hot)
    
        for layer in self.context_layers:
            x = layer(x, audio_code)
            x = F.leaky_relu(x, 0.2)
    
        logits = self.logits(x)
        logprobs = F.log_softmax(logits, dim=-1)
        probs = F.softmax(logprobs, dim=-1)
        labels = th.argmax(logprobs, dim=-1)
    
        return {"logprobs": logprobs, "probs": probs, "labels": labels}` 
    

    Thanks

    opened by karthik-mohankumar 3
  • Do you have any uv texture mapping files?

    Do you have any uv texture mapping files?

    Hi. I am very impressed with your wonderful research. Thank you so much for sharing the great results. I want to render a texture to the output generated by this model. Can I get a uv texture mapping file that matches the output?

    opened by shovelingpig 3
  • Audio features are different from your paper statement

    Audio features are different from your paper statement

    Hi, I found the audio preprocessing use simple transformation in your codes (load_audio & audio_chunking). But there are different from your statement in paper where the paper says"Our audio data is recorded at 16kHz. For each tracked mesh, we compute the Mel spectrogram of a 600ms audio snippet starting 500ms before and ending 100ms after the respective visual frame. We extract 80-dimensional Mel spectral features every 10ms, using 1, 024 frequency bins and a window size of 800 for the underlying Fourier transform."

    I didn't find any Mel spectral calculation in your code, why there are different? Is the current version is better than Mel spectral features?

    opened by kjhgfdsaas 3
  • Build pytorch3d 0.4.0 failed with torch1.10

    Build pytorch3d 0.4.0 failed with torch1.10

    I try to build pytorch3d 0.4.0 source with torch1.10 as same version as readme. But it always failed. The log is below:

    /home/local/gcc-5.3.0/bin/gcc -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -fPIC -DWITH_CUDA -DTHRUST_IGNORE_CUB_VERSION_CHECK -I/home/Projects/github_projects/pytorch3d/pytorch3d/csrc -I/home/software_packages/cub-1.10.0 -I/home/anaconda3/envs/torch1.10/lib/python3.7/site-packages/torch/include -I/home/anaconda3/envs/torch1.10/lib/python3.7/site-packages/torch/include/torch/csrc/api/include -I/home/anaconda3/envs/torch1.10/lib/python3.7/site-packages/torch/include/TH -I/home/anaconda3/envs/torch1.10/lib/python3.7/site-packages/torch/include/THC -I/usr/local/cuda-10.2/include -I/home/anaconda3/envs/torch1.10/include/python3.7m -c /home/Projects/github_projects/pytorch3d/pytorch3d/csrc/rasterize_meshes/rasterize_meshes_cpu.cpp -o build/temp.linux-x86_64-3.7/home/Projects/github_projects/pytorch3d/pytorch3d/csrc/rasterize_meshes/rasterize_meshes_cpu.o -std=c++14 -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE="_gcc" -DPYBIND11_STDLIB="_libstdcpp" -DPYBIND11_BUILD_ABI="_cxxabi1011" -DTORCH_EXTENSION_NAME=_C -D_GLIBCXX_USE_CXX11_ABI=0
      cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++
      /home/Projects/github_projects/pytorch3d/pytorch3d/csrc/rasterize_meshes/rasterize_meshes_cpu.cpp: In function ‘std::tuple<at::Tensor, at::Tensor, at::Tensor, at::Tensor> RasterizeMeshesNaiveCpu(const at::Tensor&, const at::Tensor&, const at::Tensor&, const at::Tensor&, std::tuple<int, int>, float, int, bool, bool, bool)’:
      /home/Projects/github_projects/pytorch3d/pytorch3d/csrc/rasterize_meshes/rasterize_meshes_cpu.cpp:294:28: error: converting to ‘std::tuple<float, int, float, float, float, float>’ from initializer list would use explicit constructor ‘constexpr std::tuple< <template-parameter-1-1> >::tuple(_UElements&& ...) [with _UElements = {const float&, int&, const float&, const float&, const float&, const float&}; <template-parameter-2-2> = void; _Elements = {float, int, float, float, float, float}]’
                     q[idx_top_k] = {
                                  ^
      error: command '/home/local/gcc-5.3.0/bin/gcc' failed with exit status 1
      Building wheel for pytorch3d (setup.py) ... error
      ERROR: Failed building wheel for pytorch3d
    

    Dose pytorch3d 0.4.0 really support torch1.10? I see the requirement is less than 1.7.1 in pytorch3d 0.4.0 url and less than 1.9.1 in pytorch3d main url

    My environment:

    • centos 7
    • gcc 5.3.0
    • cuda 10.2
    • cub 1.10
    • python 3.7 (conda environment)
    • torch1.10
    • pytorch3d 0.4.0
    opened by wikiwen 3
  • Which data was used for the pre-trained model

    Which data was used for the pre-trained model

    Hi! The paper mentions the following:

    We release a subset of 16 subjects of this dataset and our model using only these subjects as a baseline to compare against

    Since multiface was release with only 13 identities, can you please confirm what was used for the released pre-trained model? (e.g. the 13 identities in multiface? Those plus 3 other identities? Or another set of 16 identities?)

    Thank you!

    opened by luizgh 0
Releases(pretrained_models_v1.0)
Owner
Meta Research
Meta Research
Time Series Forecasting with Temporal Fusion Transformer in Pytorch

Forecasting with the Temporal Fusion Transformer Multi-horizon forecasting often contains a complex mix of inputs – including static (i.e. time-invari

Nicolás Fornasari 6 Jan 24, 2022
KGDet: Keypoint-Guided Fashion Detection (AAAI 2021)

KGDet: Keypoint-Guided Fashion Detection (AAAI 2021) This is an official implementation of the AAAI-2021 paper "KGDet: Keypoint-Guided Fashion Detecti

Qian Shenhan 35 Dec 29, 2022
A large-scale database for graph representation learning

A large-scale database for graph representation learning

Scott Freitas 29 Nov 25, 2022
Code for reproducing experiments in "Improved Training of Wasserstein GANs"

Improved Training of Wasserstein GANs Code for reproducing experiments in "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, Tensor

Ishaan Gulrajani 2.2k Jan 01, 2023
structured-generative-modeling

This repository contains the implementation for the paper Information Theoretic StructuredGenerative Modeling, Specially thanks for the open-source co

0 Oct 11, 2021
Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation

Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation This repository contains the Pytorch implementation of the proposed

Devavrat Tomar 19 Nov 10, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
Code of the paper "Shaping Visual Representations with Attributes for Few-Shot Learning (ASL)".

Shaping Visual Representations with Attributes for Few-Shot Learning This code implements the Shaping Visual Representations with Attributes for Few-S

chx_nju 9 Sep 01, 2022
Official implementation for CVPR 2021 paper: Adaptive Class Suppression Loss for Long-Tail Object Detection

Adaptive Class Suppression Loss for Long-Tail Object Detection This repo is the official implementation for CVPR 2021 paper: Adaptive Class Suppressio

CASIA-IVA-Lab 67 Dec 04, 2022
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which reaches a median HNS of 205.7 after only 10M frames (the original Rainbow from Hessel et al. 2017 re

Dominik Schmidt 31 Dec 21, 2022
Zero-shot Synthesis with Group-Supervised Learning (ICLR 2021 paper)

GSL - Zero-shot Synthesis with Group-Supervised Learning Figure: Zero-shot synthesis performance of our method with different dataset (iLab-20M, RaFD,

Andy_Ge 62 Dec 21, 2022
a curated list of docker-compose files prepared for testing data engineering tools, databases and open source libraries.

data-services A repository for storing various Data Engineering docker-compose files in one place. How to use it ? Set the required settings in .env f

BigData.IR 525 Dec 03, 2022
Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021

Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021 Abstract Recent works have made great success in semantic segmentation by explo

Hanzhe Hu 30 Dec 29, 2022
A annotation of yolov5-5.0

代码版本:0714 commit #4000 $ git clone https://github.com/ultralytics/yolov5 $ cd yolov5 $ git checkout 720aaa65c8873c0d87df09e3c1c14f3581d4ea61 这个代码只是注释版

Laughing 229 Dec 17, 2022
Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings

Text2Music Emotion Embedding Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings Reference Emotion Embedding Spaces for Matching

Minz Won 50 Dec 05, 2022
Angular & Electron desktop UI framework. Angular components for native looking and behaving macOS desktop UI (Electron/Web)

Angular Desktop UI This is a collection for native desktop like user interface components in Angular, especially useful for Electron apps. It starts w

Marc J. Schmidt 49 Dec 22, 2022
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023
PyTorch implementation of Deformable Convolution

PyTorch implementation of Deformable Convolution !!!Warning: There is some issues in this implementation and this repo is not maintained any more, ple

Wei Ouyang 893 Dec 18, 2022
Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch .

PyTorch-High-Res-Stereo-Depth-Estimation Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch. Stereo dep

Ibai Gorordo 26 Nov 24, 2022