LinkNet - This repository contains our Torch7 implementation of the network developed by us at e-Lab.

Related tags

Deep LearningLinkNet
Overview

LinkNet

This repository contains our Torch7 implementation of the network developed by us at e-Lab. You can go to our blogpost or read the article LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation for further details.

Dependencies:

  • Torch7 : you can follow our installation step specified here
  • VideoDecoder : video decoder for torch that utilizes avcodec library.
  • Profiler : use it to calculate # of paramaters, operations and forward pass time of any network trained using torch.

Currently the network can be trained on two datasets:

Datasets Input Resolution # of classes
CamVid (cv) 768x576 11
Cityscapes (cs) 1024x512 19

To download both datasets, follow the link provided above. Both the datasets are first of all resized by the training script and if you want then you can cache this resized data using --cachepath option. In case of CamVid dataset, the available video data is first split into train/validate/test set. This is done using prepCamVid.lua file. dataDistributionCV.txt contains the detail about splitting of CamVid dataset. These things are automatically run before training of the network.

LinkNet performance on both of the above dataset:

Datasets Best IoU Best iIoU
Cityscapes 76.44 60.78
CamVid 69.10 55.83

Pretrained models and confusion matrices for both datasets can be found in the latest release.

Files/folders and their usage:

  • run.lua : main file
  • opts.lua : contains all the input options used by the tranining script
  • data : data loaders for loading datasets
  • [models] : all the model architectures are defined here
  • train.lua : loading of models and error calculation
  • test.lua : calculate testing error and save confusion matrices

There are three model files present in models folder:

  • model.lua : our LinkNet architecture
  • model-res-dec.lua : LinkNet with residual connection in each of the decoder blocks. This slightly improves the result but we had to use bilinear interpolation in residual connection because of which we were not able to run our trained model on TX1.
  • nobypass.lua : this architecture does not use any link between encoder and decoder. You can use this model to verify if connecting encoder and decoder modules actually improve performance.

A sample command to train network is given below:

th main.lua --datapath /Datasets/Cityscapes/ --cachepath /dataCache/cityscapes/ --dataset cs --model models/model.lua --save /Models/cityscapes/ --saveTrainConf --saveAll --plot

License

This software is released under a creative commons license which allows for personal and research use only. For a commercial license please contact the authors. You can view a license summary here: http://creativecommons.org/licenses/by-nc/4.0/

Comments
  • memory consuming

    memory consuming

    The model read all the dataset into the momory, this method is too memory consuming. Maybe it is better to read the dataset list and iterate the list when training .

    opened by mingminzhen 7
  • Training on camvid dataset

    Training on camvid dataset

    Hi. I can't reproduce your result on camvid dataset. What is the learning rate and number of training epoch you used in your training, is your published result on validate or test set?.

    opened by vietdoan 4
  • Torch: not enough memory (17GB)

    Torch: not enough memory (17GB)

    Hi, all

    When I run : th main.lua --datapath /data2/cityscapes_dataset/leftImg8bit/all_train_images/ --cachepath /data2/cityscapes_dataset/leftImg8bit/dataCache/ --dataset cs --model models/model.lua --save save_models/cityscapes/ --saveTrainConf --saveAll --plot

    I got "Torch: not enough memory: you tried to allocate 17GB" error (details)

    It's strange because the paper mentioned it is trained using Titan X which has 12GB memory. Why the network consumes 17GB in running?

    Any suggestion to fix this issue?

    Thanks!

    opened by amiltonwong 3
  • Fine Tuning

    Fine Tuning

    Hi,

    is there any possibility to fine-tune this model on a custom datase with different number of classes? The pre-trained weights must be exist also, as I know.

    opened by MyVanitar 3
  • Model input/output details?

    Model input/output details?

    Hi,

    I'm having a hell of a time trying to understand what the model is expecting in terms of input and output. I'm trying to use this model in an iOS project, so I need to convert the model to Apple's CoreML format.

    Image input questions:

    • For image pixel values: 0-255, 0-1, -1-1?
    • RGB or BGR?
    • Color bias?

    Prediction output:

    • Looks like the shape is # of classes, width, height?
    • Predictions are positive floats from 0-100?

    So far I'm having the best luck with these specifications:

    import torch
    from torch2coreml import convert
    from torch.utils.serialization import load_lua
    
    model = load_lua("model-cs-IoU-cpu.net")
    
    input_shape = (3, 512, 1024)
    coreml_model = convert(
            model,
            [input_shape],
            input_names=['inputImage'],
            output_names=['outputImage'],
            image_input_names=['inputImage'],
            preprocessing_args={
                'image_scale': 2/255.0
            }
        )
    coreml_model.save("/home/sean/Downloads/Final/model-cs-IoU.mlmodel")
    
    opened by seantempesta 2
  • About IoU

    About IoU

    Hi, @codeAC29
    I cannot obtain the high IoU in my training. I looked into your code and found that, the IoU is computed via averageValid. But this is actually computing the mean of class accuracy. The IoU should be the value of averageUnionValid. Do you notice the difference and obtain 76% IoU by averageUnionValid ?

    Sorry for the trouble. For convenience, I refer the definition of averageValid and averageUnionValid here.

    opened by qqning 2
  • Error while running linknet main file

    Error while running linknet main file

    Hii, I am getting this error while running main.py RuntimeError: Expected object of type torch.cuda.LongTensor but found type torch.cuda.FloatTensor for argument 2 'target'. Please help me out. Also when i try to run the trained models i am running into error. I am using pytorch to run .net files. I am not able to load them as it is showing error: name cs is not defined. It is a model. Why does it have a variable named cs(here cs represents cityscapes) in it?

    opened by Tharun98 0
  • Model fails for input size other than multiples of 32(for depth of 4)

    Model fails for input size other than multiples of 32(for depth of 4)

    Hi, If we give the input image size other than 32 multiples there is a size mismatch error when adding the output from encoder3 and decoder4. For example input image size is 1000x2000 output of encoder3 is 63x125 and decoder4 output size is 64x126. We need adjust parameters for spatialfullconvolution layer only if input image size is multiple of 2^(n+1) where n is encoder depth. For other image sizes adjust parameter depends on the image size. In this example network works if adjust parameter is zero in decoders 3 and 4. Please clarify if this network works only for 2^(n+1) sizes. Thanks.

    opened by Tharun98 1
  • How about the image resolution?

    How about the image resolution?

    Hi, I am reproducing the LinkNet. I have a doubt about the input image resolution and the output image resolution when you compute the FLOPS. I find my FLOPS and running speed are different your results reported on your paper.

    opened by ycszen 5
  • linknet  architecture

    linknet architecture

    iam trying to build linknet in caffe. Could you please help me in below qns: 1)Found that there are 5 downsampling and 6 updsampling by 2. if we have different no of up sampling and down sampling(6,5) how can we get the same output shape as input. Referred:https://arxiv.org/pdf/1707.03718.pdf 2)how many iterations you ran to get the proper results. 3)To match the encoder and decoder output shape i used crop layer before Eltwise instead of adding extra row or column. Will it make any difference?

    opened by vishnureghu007 7
  • Error while training

    Error while training

    I got the camVid dataset as specified in the in the read me file and installed video-decoder

    Ientered the following command to start training: th main.lua --datapath ./data/CamVid/ --cachepath ./dataCache/CamV/ --dataset cv --model ./models/model.lua --save ./Models/CamV/ --saveTrainConf --saveAll --plot

    And I got the following error,

    Preparing CamVid dataset for data loader Filenames and their role found in: ./misc/dataDistributionCV.txt

    Getting input images and labels for: 01TP_extract.avi /home/jayp/torch/install/bin/luajit: /home/jayp/torch/install/share/lua/5.1/trepl/init.lua:389: /home/jayp/torch/install/share/lua/5.1/trepl/init.lua:389: error loading module 'libvideo_decoder' from file '/home/jayp/torch/install/lib/lua/5.1/libvideo_decoder.so': /home/jayp/torch/install/lib/lua/5.1/libvideo_decoder.so: undefined symbol: avcodec_get_frame_defaults stack traceback: [C]: in function 'error' /home/jayp/torch/install/share/lua/5.1/trepl/init.lua:389: in function 'require' main.lua:34: in main chunk [C]: in function 'dofile' ...jayp/torch/install/lib/luarocks/rocks/trepl/scm-1/bin/th:150: in main chunk

    I would really appreciate if anyone would help me with this.

    Thank You!

    opened by jay98 4
Releases(v1.0)
Owner
e-Lab
e-Lab
An 16kHz implementation of HiFi-GAN for soft-vc.

HiFi-GAN An 16kHz implementation of HiFi-GAN for soft-vc. Relevant links: Official HiFi-GAN repo HiFi-GAN paper Soft-VC repo Soft-VC paper Example Usa

Benjamin van Niekerk 42 Dec 27, 2022
[ ICCV 2021 Oral ] Our method can estimate camera poses and neural radiance fields jointly when the cameras are initialized at random poses in complex scenarios (outside-in scenes, even with less texture or intense noise )

GNeRF This repository contains official code for the ICCV 2021 paper: GNeRF: GAN-based Neural Radiance Field without Posed Camera. This implementation

Quan Meng 191 Dec 26, 2022
Instantaneous Motion Generation for Robots and Machines.

Ruckig Instantaneous Motion Generation for Robots and Machines. Ruckig generates trajectories on-the-fly, allowing robots and machines to react instan

Berscheid 374 Dec 23, 2022
Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting

QAConv Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting This PyTorch code is proposed in

Shengcai Liao 166 Dec 28, 2022
AI-Fitness-Tracker - AI Fitness Tracker With Python

AI-Fitness-Tracker We have build a AI based Fitness Tracker using OpenCV and Pyt

Sharvari Mangale 5 Feb 09, 2022
Groceries ARL: Association Rules (Birliktelik Kuralı)

Groceries_ARL Association Rules (Birliktelik Kuralı) Birliktelik kuralları, mark

Şebnem 5 Feb 08, 2022
Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm.

REDQ source code Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm. Paper link: https://arxiv.org/abs/2101.05

109 Dec 16, 2022
Open-AI's DALL-E for large scale training in mesh-tensorflow.

DALL-E in Mesh-Tensorflow [WIP] Open-AI's DALL-E in Mesh-Tensorflow. If this is similarly efficient to GPT-Neo, this repo should be able to train mode

EleutherAI 432 Dec 16, 2022
LightNet++: Boosted Light-weighted Networks for Real-time Semantic Segmentation

LightNet++ !!!New Repo.!!! ⇒ EfficientNet.PyTorch: Concise, Modular, Human-friendly PyTorch implementation of EfficientNet with Pre-trained Weights !!

linksense 237 Jan 05, 2023
DCGAN-tensorflow - A tensorflow implementation of Deep Convolutional Generative Adversarial Networks

DCGAN in Tensorflow Tensorflow implementation of Deep Convolutional Generative Adversarial Networks which is a stabilize Generative Adversarial Networ

Taehoon Kim 7.1k Dec 29, 2022
PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Hand Biomechanical Constraints Pytorch Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020). This project reimplement foll

Hao Meng 59 Dec 20, 2022
Face recognize system

FRS Face_recognize_system This project contains my work that target on solving some problems of FRS: Face detection: Retinaface Face anti-spoofing: Fo

Tran Anh Tuan 4 Nov 18, 2021
Highly comparative time-series analysis

〰️ hctsa 〰️ : highly comparative time-series analysis hctsa is a software package for running highly comparative time-series analysis using Matlab (fu

Ben Fulcher 569 Dec 21, 2022
Phylogeny Partners

Phylogeny-Partners Two states models Instalation You may need to install the cython, networkx, numpy, scipy package: pip install cython, networkx, num

1 Sep 19, 2022
realsense d400 -> jpg + csv

Realsense-capture realsense d400 - jpg + csv Requirements RealSense sdk : Installation Python3 pyrealsense2 (RealSense SDK) Numpy OpenCV Tkinter Run

Ar-Ray 2 Mar 22, 2022
This repository contains the official MATLAB implementation of the TDA method for reverse image filtering

ReverseFilter TDA This repository contains the official MATLAB implementation of the TDA method for reverse image filtering proposed in the paper: "Re

Fergaletto 2 Dec 13, 2021
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023
This is a deep learning-based method to segment deep brain structures and a brain mask from T1 weighted MRI.

DBSegment This tool generates 30 deep brain structures segmentation, as well as a brain mask from T1-Weighted MRI. The whole procedure should take ~1

Luxembourg Neuroimaging (Platform OpNeuroImg) 2 Oct 25, 2022
This repo. is an implementation of ACFFNet, which is accepted for in Image and Vision Computing.

Attention-Guided-Contextual-Feature-Fusion-Network-for-Salient-Object-Detection This repo. is an implementation of ACFFNet, which is accepted for in I

5 Nov 21, 2022
Run PowerShell command without invoking powershell.exe

PowerLessShell PowerLessShell rely on MSBuild.exe to remotely execute PowerShell scripts and commands without spawning powershell.exe. You can also ex

Mr.Un1k0d3r 1.2k Jan 03, 2023