SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement

Overview

SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement

This repository implements the approach described in SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement (WACV 2022).

Iterative refinement using SporeAgent

Iterative registration using SporeAgent:
The initial pose from PoseCNN (purple) and the final pose using SporeAgent (blue) on the LINEMOD (left,cropped) and YCB-Video (right) datasets.

Scene-level Plausibility

Scene-level Plausibility:
The initial scene configuration from PoseCNN (left) results in an implausible pose of the target object (gray). Refinement using SporeAgent (right) results in a plausible scene configuration where the intersecting points (red) are resolved and the object rests on its supported points (cyan).

LINEMOD AD < 0.10d AD < 0.05d AD <0.02d YCB-Video ADD AUC AD AUC ADI AUC
PoseCNN 62.7 26.9 3.3 51.5 61.3 75.2
Point-to-Plane ICP 92.6 79.8 29.9 68.2 79.2 87.8
w/ VeREFINE 96.1 85.8 32.5 70.1 81.0 88.8
Multi-hypothesis ICP 99.3 89.9 35.6 77.4 86.6 92.6
SporeAgent 99.3 93.7 50.3 79.0 88.8 93.6

Comparison on LINEMOD and YCB-Video:
The initial pose and segmentation estimates are computed using PoseCNN. We compare our approach to vanilla Point-to-Plane ICP (from Open3D), Point-to-Plane ICP augmented by the simulation-based VeREFINE approach and the ICP-based multi-hypothesis approach used for refinement in PoseCNN.

Dependencies

The code has been tested on Ubuntu 16.04 and 20.04 with Python 3.6 and CUDA 10.2. To set-up the Python environment, use Anaconda and the provided YAML file:

conda env create -f environment.yml --name sporeagent

conda activate sporeagent.

The BOP Toolkit is additionally required. The BOP_PATH in config.py needs to be changed to the respective clone directory and the packages required by the BOP Toolkit need to be installed.

The YCB-Video Toolbox is required for experiments on the YCB-Video dataset.

Datasets

We use the dataset versions prepared for the BOP challenge. The required files can be downloaded to a directory of your choice using the following bash script:

export SRC=http://ptak.felk.cvut.cz/6DB/public/bop_datasets
export DATASET=ycbv                     # either "lm" or "ycbv"
wget $SRC/$DATASET_base.zip             # Base archive with dataset info, camera parameters, etc.
wget $SRC/$DATASET_models.zip           # 3D object models.
wget $SRC/$DATASET_test_all.zip         # All test images.
unzip $DATASET_base.zip                 # Contains folder DATASET.
unzip $DATASET_models.zip -d $DATASET   # Unpacks to DATASET.
unzip $DATASET_test_all.zip -d $DATASET # Unpacks to DATASET.

For training on YCB-Video, the $DATASET_train_real.zip is moreover required.

In addition, we have prepared point clouds sampled within the ground-truth masks (for training) and the segmentation masks computed using PoseCNN (for evaluation) for the LINEMOD and YCB-Video dataset. The samples for evaluation also include the initial pose estimates from PoseCNN.

LINEMOD

Extract the prepared samples into PATH_TO_BOP_LM/sporeagent/ and set LM_PATH in config.py to the base directory, i.e., PATH_TO_BOP_LM. Download the PoseCNN results and the corresponding image set definitions provided with DeepIM and extract both into POSECNN_LM_RESULTS_PATH. Finally, since the BOP challenge uses a different train/test split than the compared methods, the appropriate target file found here needs to be placed in the PATH_TO_BOP_LM directory.

To compute the AD scores using the BOP Toolkit, BOP_PATH/scripts/eval_bop19.py needs to be adapted:

  • to use ADI for symmetric objects and ADD otherwise with a 2/5/10% threshold, change p['errors'] to
{
  'n_top': -1,
  'type': 'ad',
  'correct_th': [[0.02], [0.05], [0.1]]
}
  • to use the correct test targets, change p['targets_filename'] to 'test_targets_add.json'

YCB-Video

Extract the prepared samples into PATH_TO_BOP_YCBV/reagent/ and set YCBV_PATH in config.py to the base directory, i.e., PATH_TO_BOP_YCBV. Clone the YCB Video Toolbox to POSECNN_YCBV_RESULTS_PATH. Extract the results_PoseCNN_RSS2018.zip and copy test_data_list.txt to the same directory. The POSECNN_YCBV_RESULTS_PATH in config.py needs to be changed to the respective directory. Additionally, place the meshes in the canonical frame models_eval_canonical in the PATH_TO_BOP_YCBV directory.

To compute the ADD/AD/ADI AUC scores using the YCB-Video Toolbox, replace the respective files in the toolbox by the ones provided in sporeagent/ycbv_toolbox.

Pretrained models

Weights for both datasets can be found here. Download and copy them to sporeagent/weights/.

Training

For LINEMOD: python registration/train.py --dataset=lm

For YCB-Video: python registration/train.py --dataset=ycbv

Evaluation

Note that we precompute the normal images used for pose scoring on the first run and store them to disk.

LINEMOD

The results for LINEMOD are computed using the BOP Toolkit. The evaluation script exports the required file by running

python registration/eval.py --dataset=lm,

which can then be processed via

python BOP_PATH/scripts/eval_bop19.py --result_filenames=PATH_TO_CSV_WITH_RESULTS.

YCB-Video

The results for YCB-Video are computed using the YCB-Video Toolbox. The evaluation script exports the results in BOP format by running

python registration/eval.py --dataset=ycbv,

which can then be parsed into the format used by the YCB-Video Toolbox by running

python utility/parse_matlab.py.

In MATLAB, run evaluate_poses_keyframe.m to generate the per-sample results and plot_accuracy_keyframe.m to compute the statistics.

Citation

If you use this repository in your publications, please cite

@article{bauer2022sporeagent,
    title={SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement},
    author={Bauer, Dominik and Patten, Timothy and Vincze, Markus},
    booktitle={IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
    year={2022},
    pages={654-662}
}
Owner
Dominik Bauer
Dominik Bauer
Simulation of Self Driving Car

In this repository, the code to use Udacity's self driving car simulator as a testbed for training an autonomous car are provided.

Shyam Das Shrestha 1 Nov 21, 2021
A cross-document event and entity coreference resolution system, trained and evaluated on the ECB+ corpus.

A Comprehensive Comparison of Word Embeddings in Event & Entity Coreference Resolution. Introduction This repo contains experimental code derived from

2 May 09, 2022
Generate vibrant and detailed images using only text.

CLIP Guided Diffusion From RiversHaveWings. Generate vibrant and detailed images using only text. See captions and more generations in the Gallery See

Clay M. 401 Dec 28, 2022
Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Ibai Gorordo 99 Dec 31, 2022
GAN JAX - A toy project to generate images from GANs with JAX

GAN JAX - A toy project to generate images from GANs with JAX This project aims to bring the power of JAX, a Python framework developped by Google and

Valentin Goldité 14 Nov 29, 2022
GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification

GalaXC GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification @InProceedings{Saini21, author = {Saini, D. and Jain,

Extreme Classification 28 Dec 05, 2022
StyleGAN2-ADA - Official PyTorch implementation

Need Help? If you’re new to StyleGAN2-ADA and looking to get started, please check out this video series from a course Lia Coleman and I taught in Oct

Derrick Schultz 217 Jan 04, 2023
Discovering Interpretable GAN Controls [NeurIPS 2020]

GANSpace: Discovering Interpretable GAN Controls Figure 1: Sequences of image edits performed using control discovered with our method, applied to thr

Erik Härkönen 1.7k Jan 03, 2023
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

86 Oct 05, 2022
CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Galuh 17 Mar 10, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

Wenhao Wang 89 Jan 02, 2023
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring.

Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,

Syed Waqas Zamir 906 Dec 30, 2022
LightNet++: Boosted Light-weighted Networks for Real-time Semantic Segmentation

LightNet++ !!!New Repo.!!! ⇒ EfficientNet.PyTorch: Concise, Modular, Human-friendly PyTorch implementation of EfficientNet with Pre-trained Weights !!

linksense 237 Jan 05, 2023
Official codes for the paper "Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech"

ResDAVEnet-VQ Official PyTorch implementation of Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech What is in this repo? M

Wei-Ning Hsu 21 Aug 23, 2022
D2Go is a toolkit for efficient deep learning

D2Go D2Go is a production ready software system from FacebookResearch, which supports end-to-end model training and deployment for mobile platforms. W

Facebook Research 744 Jan 04, 2023
Reproduced Code for Image Forgery Detection papers.

Image Forgery Detection With over 4.5 billion active internet users, the amount of multimedia content being shared every day has surpassed everyone’s

Umar Masud 15 Dec 06, 2022
Online-compatible Unsupervised Non-resonant Anomaly Detection Repository

Online-compatible Unsupervised Non-resonant Anomaly Detection Repository Repository containing all scripts used in the studies of Online-compatible Un

0 Nov 09, 2021
Collection of NLP model explanations and accompanying analysis tools

Thermostat is a large collection of NLP model explanations and accompanying analysis tools. Combines explainability methods from the captum library wi

126 Nov 22, 2022
ACV is a python library that provides explanations for any machine learning model or data.

ACV is a python library that provides explanations for any machine learning model or data. It gives local rule-based explanations for any model or data and different Shapley Values for tree-based mod

Salim Amoukou 85 Dec 27, 2022
Rule-based Customer Segmentation

Rule-based Customer Segmentation Business Problem A game company wants to create level-based new customer definitions (personas) by using some feature

Cem Çaluk 2 Jan 03, 2022