PyTorch common framework to accelerate network implementation, training and validation

Overview

pytorch-framework

PyTorch common framework to accelerate network implementation, training and validation.

This framework is inspired by works from MMLab, which modularize the data, network, loss, metric, etc. to make the framework to be flexible, easy to modify and to extend.

How to use

# install necessary libs
pip install -r requirements.txt

The framework contains six different subfolders:

  • networks: all networks should be implemented under the networks folder with {NAME}_network.py filename.
  • datasets: all datasets should be implemented under the datasets folder with {NAME}_dataset.py filename.
  • losses: all losses should be implemented under the losses folder with {NAME}_loss.py filename.
  • metrics: all metrics should be implemented under the metrics folder with {NAME}_metric.py filename.
  • models: all models should be implemented under the models folder with {NAME}_model.py filename.
  • utils: all util functions should be implemented under the utils folder with {NAME}_util.py filename.

The training and validation procedure can be defined in the specified .yaml file.

# training 
CUDA_VISIBLE_DEVICES=gpu_ids python train.py --opt options/train.yaml

# validation/test
CUDA_VISIBLE_DEVICES=gpu_ids python test.py --opt options/test.yaml

In the .yaml file for training, you can define all the things related to training such as the experiment name, model, dataset, network, loss, optimizer, metrics and other hyper-parameters. Here is an example to train VGG16 for image classification:

# general setting
name: vgg_train
backend: dp # DataParallel
type: ClassifierModel
num_gpu: auto

# path to resume network
path:
  resume_state: ~

# datasets
datasets:
  train_dataset:
    name: TrainDataset
    type: ImageNet
    data_root: ../data/train_data
  val_dataset:
    name: ValDataset
    type: ImageNet
    data_root: ../data/val_data
  # setting for train dataset
  batch_size: 8

# network setting
networks:
  classifier:
    type: VGG16
    num_classes: 1000

# training setting
train:
  total_iter: 10000
  optims:
    classifier:
      type: Adam
      lr: 1.0e-4
  schedulers:
    classifier:
      type: none
  losses:
    ce_loss:
      type: CrossEntropyLoss

# validation setting
val:
  val_freq: 10000

# log setting
logger:
  print_freq: 100
  save_checkpoint_freq: 10000

In the .yaml file for validation, you can define all the things related to validation such as: model, dataset, metrics. Here is an example:

# general setting
name: test
backend: dp # DataParallel
type: ClassifierModel
num_gpu: auto
manual_seed: 1234

# path
path:
  resume_state: experiments/train/models/final.pth
  resume: false

# datasets
datasets:
  val_dataset:
    name: ValDataset
    type: ImageNet
    data_root: ../data/test_data

# network setting
networks:
  classifier:
    type: VGG
    num_classes: 1000

# validation setting
val:
  metrics:
    accuracy:
      type: calculate_accuracy

Framework Details

The core of the framework is the BaseModel in the base_model.py. The BaseModel controls the whole training/validation procedure from initialization over training/validation iteration to results saving.

  • Initialization: In the model initialization, it will read the configuration in the .yaml file and construct the corresponding networks, datasets, losses, optimizers, metrics, etc.
  • Training/Validation: In the training/validation procedure, you can refer the training process in the train.py and the validation process in the test.py.
  • Results saving: The model will automatically save the state_dict for networks, optimizers and other hyperparameters during the training.

The configuration of the framework is down by Register in the registry.py. The Register has a object map (key-value pair). The key is the name of the object, the value is the class of the object. There are total 4 different registers for networks, datasets, losses and metrics. Here is an example to register a new network:

import torch
import torch.nn as nn

from utils.registry import NETWORK_REGISTRY

@NETWORK_REGISTRY.register()
class MyNet(nn.Module):
  ...
Owner
Dongliang Cao
Dongliang Cao
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
Tensorflow implementation of "Learning Deconvolution Network for Semantic Segmentation"

Tensorflow implementation of Learning Deconvolution Network for Semantic Segmentation. Install Instructions Works with tensorflow 1.11.0 and uses the

Fabian Bormann 224 Apr 15, 2022
The code for replicating the experiments from the LFI in SSMs with Unknown Dynamics paper.

Likelihood-Free Inference in State-Space Models with Unknown Dynamics This package contains the codes required to run the experiments in the paper. Th

Alex Aushev 0 Dec 27, 2021
Code repository for "Reducing Underflow in Mixed Precision Training by Gradient Scaling" presented at IJCAI '20

Reducing Underflow in Mixed Precision Training by Gradient Scaling This project implements the gradient scaling method to improve the performance of m

Ruizhe Zhao 5 Apr 14, 2022
This project uses reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can learn to read tape. The project is dedicated to hero in life great Jesse Livermore.

Reinforcement-trading This project uses Reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can

Deepender Singla 1.4k Dec 22, 2022
Use .csv files to record, play and evaluate motion capture data.

Purpose These scripts allow you to record mocap data to, and play from .csv files. This approach facilitates parsing of body movement data in statisti

21 Dec 12, 2022
Kaggle: Cell Instance Segmentation

Kaggle: Cell Instance Segmentation The goal of this challenge is to detect cells in microscope images. with simple view on how many cels have been ann

Jirka Borovec 9 Aug 12, 2022
Change is Everywhere: Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery (ICCV 2021)

Change is Everywhere Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery by Zhuo Zheng, Ailong Ma, Liangpei Zhang and Yanfei

Zhuo Zheng 125 Dec 13, 2022
Code repository for Self-supervised Structure-sensitive Learning, CVPR'17

Self-supervised Structure-sensitive Learning (SSL) Ke Gong, Xiaodan Liang, Xiaohui Shen, Liang Lin, "Look into Person: Self-supervised Structure-sensi

Clay Gong 219 Dec 29, 2022
A small fun project using python OpenCV, mediapipe, and pydirectinput

Here I tried a small fun project using python OpenCV, mediapipe, and pydirectinput. Here we can control moves car game when yellow color come to right box (press key 'd') left box (press key 'a') lef

Sameh Elisha 3 Nov 17, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
利用python脚本实现微信、支付宝账单的合并,并保存到excel文件实现自动记账,可查看可视化图表。

KeepAccounts_v2.0 KeepAccounts.exe和其配套表格能够实现微信、支付宝官方导出账单的读取合并,为每笔帐标记类型,并按月份和类型生成可视化图表。再也不用消费一笔记一笔,每月仅需10分钟,记好所有的帐。 作者: MickLife Bilibili: https://spac

159 Jan 01, 2023
PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street

PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street This is

ShotaDEGUCHI 2 Apr 18, 2022
Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method

C++/ROS Source Codes for "Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method" published in IEEE Trans. Intelligent Transportation Systems

Bai Li 88 Dec 23, 2022
This repository contains the code and models for the following paper.

DC-ShadowNet Introduction This is an implementation of the following paper DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using Unsupervised

AuAgCu 65 Dec 27, 2022
A flexible ML framework built to simplify medical image reconstruction and analysis experimentation.

meddlr Getting Started Meddlr is a config-driven ML framework built to simplify medical image reconstruction and analysis problems. Installation To av

Arjun Desai 36 Dec 16, 2022
Morphable Detector for Object Detection on Demand

Morphable Detector for Object Detection on Demand (ICCV 2021) PyTorch implementation of the paper Morphable Detector for Object Detection on Demand. I

9 Feb 23, 2022
pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.

pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal Welcome! pcnaDeep integrates cutting-edge detection techniques with tracki

ChanLab 8 Oct 18, 2022
PyTorch code for the paper "Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval".

Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval (M2HSE) PyTorch code fo

Xinlei-Pei 6 Dec 23, 2022