This is the official code release for the paper Shape and Material Capture at Home

Overview

Shape and Material Capture at Home, CVPR 2021.

Daniel Lichy, Jiaye Wu, Soumyadip Sengupta, David Jacobs

A bare-bones capture setup

Overview

This is the official code release for the paper Shape and Material Capture at Home. The code enables you to reconstruct a 3D mesh and Cook-Torrance BRDF from one or more images captured with a flashlight or camera with flash.

We provide:

  • The trained RecNet model.
  • Code to test on the DiLiGenT dataset.
  • Code to test on our dataset from the paper.
  • Code to test on your own dataset.
  • Code to train a new model, including code for visualization and logging.

Dependencies

This project uses the following dependencies:

  • Python 3.8
  • PyTorch (version = 1.8.1)
  • torchvision
  • numpy
  • scipy
  • opencv
  • OpenEXR (only required for training)

The easiest way to run the code is by creating a virtual environment and installing the dependences with pip e.g.

# Create a new python3.8 environment named py3.8
virtualenv py3.8 -p python3.8

# Activate the created environment
source py3.8/bin/activate

#upgrade pip
pip install --upgrade pip

# To install dependencies 
python -m pip install -r requirements.txt
#or
python -m pip install -r requirements_no_exr.txt

Capturing you own dataset

Multi-image captures

The video below shows how to capture the (up to) six images for you own dataset. Angles are approximate and can be estimated by eye. The camera should be approximately 1 to 4 feet from the object. The flashlight should be far enough from the object such that the entire object is in the illumination cone of the flashlight.

We used this flashlight, but any bright flashlight should work. We used this tripod which comes with a handy remote for iPhone and Android.

Please see the Project Page for a higher resolution version of this video.

Example reconstructions:


Single image captures

Our network also provides state-of-the-art results for reconstructing shape and material from a single flash image.

Examples captured with just an iPhone with flash enabled in a dim room (complete darkness is not needed):


Mask Making

For best performance you should supply a segmentation mask with your image. For our paper we used https://github.com/saic-vul/fbrs_interactive_segmentation which enables mask making with just a few clicks.

Normal prediction results are reasonable without the mask, but integrating normals to a mesh without the mask can be challenging.

Test RecNet on the DiLiGenT dataset

# Download and prepare the DiLiGenT dataset
sh scripts/prepare_diligent_dataset.sh

# Test on 3 DiLiGenT images from the front, front-right, and front-left
# if you only have CPUs remove the --gpu argument
python eval_diligent.py results_path --gpu

# To test on a different subset of DiLiGenT images use the argument --image_nums n1 n2 n3 n4 n5 n6
# where n1 to n6 are the image indices of the right, front-right, front, front-left, left, and above
# images, respectively. For images that are no present set the image number to -1
# e.g to test on only the front image (image number 51) run
python eval_diligent.py results_path --gpu --image_nums -1 -1 51 -1 -1 -1 

Test on our dataset/your own dataset

The easiest way to test on you own dataset and our dataset is to format it as follows:

dataset_dir:

  • sample_name1:
    • 0.ext (right)
    • 1.ext (front-right)
    • 2.ext (front)
    • 3.ext (front-left)
    • 4.ext (left)
    • 5.ext (above)
    • mask.ext
  • sample_name2: (if not all images are present just don't add it to the directory)
    • 2.ext (front)
    • 3.ext (front-left)
  • ...

Where .ext is the image extention e.g. .png, .jpg, .exr

For an example of formating your own dataset please look in data/sample_dataset

Then run:

python eval_standard.py results_path --dataset_root path_to_dataset_dir --gpu

# To test on a sample of our dataset run
python eval_standard.py results_path --dataset_root data/sample_dataset --gpu

Download our real dataset

Coming Soon...

Integrating Normal Maps and Producing a Mesh

We include a script to integrate normals and produce a ply mesh with per vertex albedo and roughness.

After running eval_standard.py or eval_diligent.py there with be a file results_path/images/integration_data.csv Running the following command with produce a ply mesh in results_path/images/sample_name/mesh.ply

python integrate_normals.py results_path/images/integration_data.csv --gpu

This is the most time intensive part of the reconstruction and takes about 3 minutes to run on GPU and 5 minutes on CPU.

Training

To train RecNet from scratch:

python train.py log_dir --dr_dataset_root path_to_dr_dataset --sculpt_dataset_root path_to_sculpture_dataset --gpu

Download the training data

Coming Soon...

FAQ

Q1: What should I do if I have problem running your code?

  • Please create an issue if you encounter errors when trying to run the code. Please also feel free to submit a bug report.

Citation

If you find this code or the provided models useful in your research, please cite it as:

@inproceedings{lichy_2021,
  title={Shape and Material Capture at Home},
  author={Lichy, Daniel and Wu, Jiaye and Sengupta, Soumyadip and Jacobs, David W.},
  booktitle={CVPR},
  year={2021}
}

Acknowledgement

Code used for downloading and loading the DiLiGenT dataset is adapted from https://github.com/guanyingc/SDPS-Net

Tilted Empirical Risk Minimization (ICLR '21)

Tilted Empirical Risk Minimization This repository contains the implementation for the paper Tilted Empirical Risk Minimization ICLR 2021 Empirical ri

Tian Li 40 Nov 28, 2022
Coded illumination for improved lensless imaging

CodedCam Coded Illumination for Improved Lensless Imaging Paper | Supplementary results | Data and Code are available. Coded illumination for improved

Computational Sensing and Information Processing Lab 1 Nov 29, 2021
COIN the currently largest dataset for comprehensive instruction video analysis.

COIN Dataset COIN is the currently largest dataset for comprehensive instruction video analysis. It contains 11,827 videos of 180 different tasks (i.e

86 Dec 28, 2022
Keras implementation of AdaBound

AdaBound for Keras Keras port of AdaBound Optimizer for PyTorch, from the paper Adaptive Gradient Methods with Dynamic Bound of Learning Rate. Usage A

Somshubra Majumdar 132 Sep 23, 2022
KoCLIP: Korean port of OpenAI CLIP, in Flax

KoCLIP This repository contains code for KoCLIP, a Korean port of OpenAI's CLIP. This project was conducted as part of Hugging Face's Flax/JAX communi

Jake Tae 100 Jan 02, 2023
PyTorch Implementation of Spatially Consistent Representation Learning(SCRL)

Spatially Consistent Representation Learning (CVPR'21) Official PyTorch implementation of Spatially Consistent Representation Learning (SCRL). This re

Kakao Brain 102 Nov 03, 2022
Multimodal Descriptions of Social Concepts: Automatic Modeling and Detection of (Highly Abstract) Social Concepts evoked by Art Images

MUSCO - Multimodal Descriptions of Social Concepts Automatic Modeling of (Highly Abstract) Social Concepts evoked by Art Images This project aims to i

0 Aug 22, 2021
Open-source python package for the extraction of Radiomics features from 2D and 3D images and binary masks.

pyradiomics v3.0.1 Build Status Linux macOS Windows Radiomics feature extraction in Python This is an open-source python package for the extraction of

Artificial Intelligence in Medicine (AIM) Program 842 Dec 28, 2022
GDSC-ML Team Interview Task

GDSC-ML-Team---Interview-Task Task 1 : Clean or Messy room In this task we have to classify the given test images as clean or messy. - Link for datase

Aayush. 1 Jan 19, 2022
Pytorch implementation of our method for regularizing nerual radiance fields for few-shot neural volume rendering.

InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering Pytorch implementation of our method for regularizing nerual radiance fields f

106 Jan 06, 2023
Image Recognition using Pytorch

PyTorch Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot practice and contributing in

Sarat Chinni 1 Nov 02, 2021
Stochastic Extragradient: General Analysis and Improved Rates

Stochastic Extragradient: General Analysis and Improved Rates This repository is the official implementation of the paper "Stochastic Extragradient: G

Hugo Berard 4 Nov 11, 2022
Ganilla - Official Pytorch implementation of GANILLA

GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe

Samet Hi 462 Dec 05, 2022
Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies project page paper demo video Prerequisites Important Notes We suspect there are bugs i

54 Dec 06, 2022
3D-Reconstruction 基于深度学习方法的单目多视图三维重建

基于深度学习方法的单目多视图三维重建 Part I 三维重建 代码:Part1 技术文档:[Markdown] [PDF] 原始图像:Original Images 点云结果:Point Cloud Results-1

HMT_Curo 19 Dec 26, 2022
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022
Pytorch Implementation of rpautrat/SuperPoint

SuperPoint-Pytorch (A Pure Pytorch Implementation) SuperPoint: Self-Supervised Interest Point Detection and Description Thanks This work is based on:

76 Dec 27, 2022
The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies

REST The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies. Usage Download dataset Download

DMIRLAB 2 Mar 13, 2022
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022
automatic color-grading

color-matcher Description color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, painting

hahnec 168 Jan 05, 2023