ObjectDetNet is an easy, flexible, open-source object detection framework

Overview

Getting started with the ObjectDetNet

ObjectDetNet is an easy, flexible, open-source object detection framework which allows you to easily train, resume & prototype training sessions, run inference and flexibly work with checkpoints in a production grade environment.

Quick Start

Copy and paste this into your command line

#run in docker 
docker run --rm -it --init  --runtime=nvidia  --ipc=host  -e NVIDIA_VISIBLE_DEVICES=0 buffalonoam/zazu-image:0.3 bash

mkdir data
cd data
git clone https://github.com/dataloop-ai/tiny_coco.git
cd ..
git clone https://github.com/dataloop-ai/ObjectDetNet.git
cd ObjectDetNet
python main.py --train

After training just run:

python main.py --predict 
# OR 
python main.py --predict_single
# to predict a single item

To change the data you run on or the parameters of your model just update the example_checkpoint.pt file!

At the core of the ObjectDetNet framework is the checkpoint object. The checkpoint object is a json, pt or json styled file to be loaded into python as a dictionary. Checkpoint objects aren't just used for training, but also necessary for running inference. Bellow is an example of how a checkpoint object might look.

├── {} devices
│   ├── {} gpu_index
│       ├── 0
├── {} model_specs
│   ├── {} name
│       ├── retinanet
│   ├── {} training_configs
│       ├── {} depth
│           ├── 152
│       ├── {} input_size
│       ├── {} learning_rate
│   ├── {} data
│       ├── {} home_path
│       ├── {} annotation_type
│           ├── coco
│       ├── {} dataset_name
├── {} hp_values
│       ├── {} learning_rate
│       ├── {} tuner/epochs
│       ├── {} tuner/initial_epoch
├── {} labels
│       ├── {} 0
│           ├── Rodent
│       ├── {} 1
│       ├── {} 2
├── {} metrics
│       ├── {} val_accuracy
│           ├── 0.834
├── {} model
├── {} optimizer
├── {} scheduler
├── {} epoch
│       ├── 18

For training your checkpoint dictionary must have the following keys:

  • device - gpu index for which to convert all tensors
  • model_specs - contains 3 fields
    1. name
    2. training_configs
    3. data

To resume training you'll also need:

  • model - contains state of model weights
  • optimizer - contains state of optimizer
  • scheduler - contains state of scheduler
  • epoch - to know what epoch to start from

To run inference your checkpoint will need:

  • model_specs
  • labels

If you'd like to customize by adding your own model, check out Adding a Model

Feel free to reach out with any questions

WeChat: BuffaloNoam
Line: buffalonoam
WhatsApp: +972524226459

Refrences

Thank you to these repositories for their contributions to the ObjectDetNet

This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

Hansheng Jiang 6 Nov 18, 2022
Python Environment for Bayesian Learning

Pebl is a python library and command line application for learning the structure of a Bayesian network given prior knowledge and observations. Pebl in

Abhik Shah 103 Jul 14, 2022
A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

Yutian Liu 2 Jan 29, 2022
Trustworthy AI related projects

Trustworthy AI This repository aims to include trustworthy AI related projects from Huawei Noah's Ark Lab. Current projects include: Causal Structure

HUAWEI Noah's Ark Lab 589 Dec 30, 2022
(AAAI2022) Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Semantic Segmentation

SM-PPM This is a Pytorch implementation of our paper "Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Seman

W-zx-Y 10 Dec 07, 2022
A program that uses computer vision to detect hand gestures, used for controlling movie players.

HandGestureDetection This program uses a Haar Cascade algorithm to detect the presence of your hand, and then passes it on to a self-created and self-

2 Nov 22, 2022
Library for machine learning stacking generalization.

stacked_generalization Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also availab

114 Jul 19, 2022
Source code for deep symbolic optimization.

Update July 10, 2021: This repository now supports an additional symbolic optimization task: learning symbolic policies for reinforcement learning. Th

Brenden Petersen 290 Dec 25, 2022
tmm_fast is a lightweight package to speed up optical planar multilayer thin-film device computation.

tmm_fast tmm_fast or transfer-matrix-method_fast is a lightweight package to speed up optical planar multilayer thin-film device computation. It is es

26 Dec 11, 2022
U-Net Implementation: Convolutional Networks for Biomedical Image Segmentation" using the Carvana Image Masking Dataset in PyTorch

U-Net Implementation By Christopher Ley This is my interpretation and implementation of the famous paper "U-Net: Convolutional Networks for Biomedical

Christopher Ley 1 Jan 06, 2022
Localized representation learning from Vision and Text (LoVT)

Localized Vision-Text Pre-Training Contrastive learning has proven effective for pre- training image models on unlabeled data and achieved great resul

Philip Müller 10 Dec 07, 2022
Vanilla and Prototypical Networks with Random Weights for image classification on Omniglot and mini-ImageNet. Made with Python3.

vanilla-rw-protonets-project Vanilla Prototypical Networks and PNs with Random Weights for image classification on Omniglot and mini-ImageNet. Made wi

Giovani Candido 8 Aug 31, 2022
Code in conjunction with the publication 'Contrastive Representation Learning for Hand Shape Estimation'

HanCo Dataset & Contrastive Representation Learning for Hand Shape Estimation Code in conjunction with the publication: Contrastive Representation Lea

Computer Vision Group, Albert-Ludwigs-Universität Freiburg 38 Dec 13, 2022
RSNA Intracranial Hemorrhage Detection with python

RSNA Intracranial Hemorrhage Detection This is the source code for the first place solution to the RSNA2019 Intracranial Hemorrhage Detection Challeng

24 Nov 30, 2022
Centroid-UNet is deep neural network model to detect centroids from satellite images.

Centroid UNet - Locating Object Centroids in Aerial/Serial Images Introduction Centroid-UNet is deep neural network model to detect centroids from Aer

GIC-AIT 19 Dec 08, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022
Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)

Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)- Emirhan BULUT

Emirhan BULUT 102 Nov 18, 2022
Depth-Aware Video Frame Interpolation (CVPR 2019)

DAIN (Depth-Aware Video Frame Interpolation) Project | Paper Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang IEEE C

Wenbo Bao 7.7k Dec 31, 2022
RL algorithm PPO and IRL algorithm AIRL written with Tensorflow.

RL algorithm PPO and IRL algorithm AIRL written with Tensorflow. They have a parallel sampling feature in order to increase computation speed (especially in high-performance computing (HPC)).

Fangjian Li 3 Dec 28, 2021