Python Automated Machine Learning library for tabular data.

Overview

Read the Docs Lines of code GitHub issues GitHub Repo stars GitHub contributors


Logo

Simple but powerful Automated Machine Learning library for tabular data. It uses efficient in-memory SAP HANA algorithms to automate routine Data Science tasks.
πŸ“š Explore the docs Β»

🐞 Report Bug Β· πŸ†• Request Feature

Table of Contents

  1. About The Project
  2. Getting Started
  3. Usage
  4. Roadmap
  5. Contributing
  6. License
  7. Contact

About the project

Disclaimer

This library is an open-source research project and is not part of any official SAP products.

What's this?

This is a simple but accurate Automated Machine Learning library. Based on SAP HANA powerful in-memory algorithms, it provides high accuracy in multiple machine learning tasks. Our library also uses numerous data preprocessing functions to automate routine data cleaning tasks. So, hana_automl goes through all AutoML steps and makes Data Science work easier.

What is SAP HANA?

From www.sap.com: SAP HANA is a high-performance in-memory database that speeds data-driven, real-time decisions and actions.

Web app

https://share.streamlit.io/dan0nchik/sap-hana-automl/main/web.py

Documentation

https://sap-hana-automl.readthedocs.io/en/latest/index.html

Benchmarks

https://github.com/dan0nchik/SAP-HANA-AutoML/blob/main/comparison_openml.ipynb

ML tasks:

  • Binary classification
  • Regression
  • Multiclass classification
  • Forecasting

Steps automated:

  • Data exploration
  • Data preparation
  • Feature engineering
  • Model selection
  • Model training
  • Hyperparameter tuning

πŸ‘‡ By the end of summer 2021, blue part will be fully automated by our library Logo

Clients

Streamlit client Streamlit client

Built With

Getting Started

To get a package up and running, follow these simple steps.

Prerequisites

Make sure you have the following:

  1. βœ… Setup SAP HANA (skip this step if you have an instance with PAL enabled). There are 2 ways to do that.
    In HANA Cloud:

    • Create a free trial account
    • Setup an instance
    • Enable PAL - Predictive Analysis Library. It is vital to enable it because we use their algorithms.

    In Virtual Machine:

    • Rent a virtual machine in Azure, AWS, Google Cloud, etc.
    • Install HANA instance there or on your PC (if you have >32 Gb RAM).
    • Enable PAL - Predictive Analysis Library. It is vital to enable it because we use their algorithms.
  2. βœ… Installed software

  • Python > 3.6
    Skip this step if python --version returns > 3.6
  • Cython
    pip3 install Cython

Installation

There are 2 ways to install the library

  • Stable: from pypi
    pip3 install hana_automl
  • Latest: from the repository
    pip3 install https://github.com/dan0nchik/SAP-HANA-AutoML/archive/dev.zip
    Note: latest version may contain bugs, be careful!

After installation

Check that PAL (Predictive Analysis Library) is installed and roles are granted

  • Read docs section about that.
  • If you don't want to read docs, run this code
    from hana_automl.utils.scripts import setup_user
    from hana_ml.dataframe import ConnectionContext
    
    cc = ConnectionContext(address='address', user='user', password='password', port=39015)
    
    # replace with credentials of user that will be created or granted a role to run PAL.
    setup_user(connection_context=cc, username='user', password="password")

Usage

From code

Our library in a few lines of code

Connect to database.

from hana_ml.dataframe import ConnectionContext

cc = ConnectionContext(address='address',
                     user='username',
                     password='password',
                     port=1234)

Create AutoML model and fit it.

from hana_automl.automl import AutoML

model = AutoML(cc)
model.fit(
  file_path='path to training dataset', # it may be HANA table/view, or pandas DataFrame
  steps=10, # number of iterations
  target='target', # column to predict
  time_limit=120 # time limit in seconds
)

Predict.

model.predict(
file_path='path to test dataset',
id_column='ID',
verbose=1
)

For more examples, please refer to the Documentation

How to run Streamlit client

  1. Clone repository: git clone https://github.com/dan0nchik/SAP-HANA-AutoML.git
  2. Install dependencies: pip3 install -r requirements.txt
  3. Run GUI: streamlit run ./web.py

Roadmap

See the open issues for a list of proposed features (and known issues). Feel free to report any bugs :)

Contributing

Any contributions you make are greatly appreciated πŸ‘ !

  1. Fork the Project

  2. Create your Feature Branch (git checkout -b feature/NewFeature)

  3. Install dependencies

    pip3 install Cython
    pip3 install -r requirements.txt
  4. Create credentials.py file in tests directory Your files should look like this:

    SAP-HANA-AutoML
    β”‚   README.md
    β”‚   all other files   
    β”‚   .....
    |
    └───tests
        β”‚   test files...
        β”‚   credentials.py
    

    Copy and paste this piece of code there and replace it with your credentials:

    host = "host"
    user = "username"
    password = "password"
    port = 39015 # or any port you need
    schema = "your schema"

    Don't worry, this file is in .gitignore, so your credentials won't be seen by anyone.

  5. Make some changes

  6. Write tests that cover your code in tests directory

  7. Run tests (under SAP-HANA-AutoML directory)

    pytest
  8. Commit your changes (git commit -m 'Add some amazing features')

  9. Push to the branch (git push origin feature/AmazingFeature)

  10. Open a Pull Request

License

Distributed under the MIT License. See LICENSE for more information.
Don't really understand license? Check out the MIT license summary.

Contact

Authors: @While-true-codeanything, @DbusAI, @dan0nchik

Project Link: https://github.com/dan0nchik/SAP-HANA-AutoML

Owner
Daniel Khromov
Learning Swift, C#, and Data Science
Daniel Khromov
ML-powered Loan-Marketer Customer Filtering Engine

In Loan-Marketing business employees are required to call the user's to buy loans of several fields and in several magnitudes. If employees are calling everybody in the network it is also very length

Sagnik Roy 13 Jul 02, 2022
Code Repository for Machine Learning with PyTorch and Scikit-Learn

Code Repository for Machine Learning with PyTorch and Scikit-Learn

Sebastian Raschka 1.4k Jan 03, 2023
A Python package to preprocess time series

Disclaimer: This package is WIP. Do not take any APIs for granted. tspreprocess Time series can contain noise, may be sampled under a non fitting rate

Maximilian Christ 57 Dec 17, 2022
ETNA – time series forecasting framework

ETNA Time Series Library Predict your time series the easiest way Homepage | Documentation | Tutorials | Contribution Guide | Release Notes ETNA is an

Tinkoff.AI 675 Jan 08, 2023
This is the material used in my free Persian course: Machine Learning with Python

This is the material used in my free Persian course: Machine Learning with Python

Yara Mohamadi 4 Aug 07, 2022
InfiniteBoost: building infinite ensembles with gradient descent

InfiniteBoost Code for a paper InfiniteBoost: building infinite ensembles with gradient descent (arXiv:1706.01109). A. Rogozhnikov, T. Likhomanenko De

Alex Rogozhnikov 183 Jan 03, 2023
Lightning ⚑️ fast forecasting with statistical and econometric models.

Nixtla Statistical ⚑️ Forecast Lightning fast forecasting with statistical and econometric models StatsForecast offers a collection of widely used uni

Nixtla 2.1k Dec 29, 2022
easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

Neuron AI 5 Jun 18, 2022
AI and Machine Learning with Kubeflow, Amazon EKS, and SageMaker

Data Science on AWS - O'Reilly Book Get the book on Amazon.com Book Outline Quick Start Workshop (4-hours) In this quick start hands-on workshop, you

Data Science on AWS 2.8k Jan 03, 2023
Module for statistical learning, with a particular emphasis on time-dependent modelling

Operating system Build Status Linux/Mac Windows tick tick is a Python 3 module for statistical learning, with a particular emphasis on time-dependent

X - Data Science Initiative 410 Dec 14, 2022
Predicting job salaries from ads - a Kaggle competition

Predicting job salaries from ads - a Kaggle competition

Zygmunt ZajΔ…c 57 Oct 23, 2020
Made in collaboration with Chris George for Art + ML Spring 2019.

Deepdream Eyes Made in collaboration with Chris George for Art + ML Spring 2019.

Francisco Cabrera 1 Jan 12, 2022
Spark development environment for k8s

Local Spark Dev Env with Docker Development environment for k8s. Using the spark-operator image to ensure it will be the same environment. Start conta

Otacilio Filho 18 Jan 04, 2022
PyNNDescent is a Python nearest neighbor descent for approximate nearest neighbors.

PyNNDescent PyNNDescent is a Python nearest neighbor descent for approximate nearest neighbors. It provides a python implementation of Nearest Neighbo

Leland McInnes 699 Jan 09, 2023
Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Priyansh Sharma 7 Nov 09, 2022
Python factor analysis library (PCA, CA, MCA, MFA, FAMD)

Prince is a library for doing factor analysis. This includes a variety of methods including principal component analysis (PCA) and correspondence anal

Max Halford 915 Dec 31, 2022
Bayesian Additive Regression Trees For Python

BartPy Introduction BartPy is a pure python implementation of the Bayesian additive regressions trees model of Chipman et al [1]. Reasons to use BART

187 Dec 16, 2022
Predico Disease Prediction system based on symptoms provided by patient- using Python-Django & Machine Learning

Predico Disease Prediction system based on symptoms provided by patient- using Python-Django & Machine Learning

Felix Daudi 1 Jan 06, 2022
A Python toolkit for rule-based/unsupervised anomaly detection in time series

Anomaly Detection Toolkit (ADTK) Anomaly Detection Toolkit (ADTK) is a Python package for unsupervised / rule-based time series anomaly detection. As

Arundo Analytics 888 Dec 30, 2022
Conducted ANOVA and Logistic regression analysis using matplot library to visualize the result.

Intro-to-Data-Science Conducted ANOVA and Logistic regression analysis. Project ANOVA The main aim of this project is to perform One-Way ANOVA analysi

Chris Yuan 1 Feb 06, 2022