A complete guide to start and improve in machine learning (ML)

Overview

Start Machine Learning in 2021 - Become an expert for free!

A complete guide to start and improve in machine learning (ML), artificial intelligence (AI) in 2021 without ANY background in the field and stay up-to-date with the latest news and state-of-the-art techniques!

This guide is intended for anyone having zero or a small background in programming, maths, and machine learning. There is no specific order to follow, but a classic path would be from top to bottom. If you don't like reading books, skip it, if you don't want to follow an online course, you can skip it as well. There is not a single way to become a machine learning expert and with motivation, you can absolutely achieve it.

All resources listed here are free, except some online courses and books, which are certainly recommended for a better understanding, but it is definitely possible to become an expert without them, with a little more time spent on online readings, videos and practice. When it comes to paying courses, the links in this guide are affiliated links. Please, use them if you feel like following a course as it will support me. Thank you, and have fun learning! Remember, this is completely up to you and not necessary. I felt like it was useful to me and maybe useful to others as well.

Don't be afraid to repeat videos or learn from multiple sources. Repetition is the key of success to learning!

Maintainer - louisfb01

Feel free to message me any great resources to add to this repository on [email protected]

Tag me on Twitter @Whats_AI or LinkedIn @Louis (What's AI) Bouchard if you share the list!

Want to know what is this guide about? Watch this video:

Watch the video

Table of Contents

Start with short YouTube video introductions

Start with short YouTube videos introductions

This is the best way to start from nothing in my opinion. Here, I list a few of the best videos I found that will give you a great first introduction of the terms you need to know to get started in the field.

Follow free online courses on YouTube

Follow free online courses on YouTube

Here is a list of awesome courses available on YouTube that you should definitely follow and are 100% free.

Read articles

Read many articles

Here is a list of awesome articles available online that you should definitely read and are 100% free.

Read Books

Read some books

Here are some great books to read for the people preferring the reading path.

Great books for building your math background:

A complete Calculus background:

These books are completely optional, but they will provide you a better understanding of the theory and even teach you some stuff about coding your neural networks!

No math background for ML? Check this out!

No math background for ML? Check this out!

Don't stress, just like most of the things in life, you can learn maths! Here are some great beginner and advanced resources to get into machine learning maths. I would suggest starting with these three very important concepts in machine learning (here are 3 awesome free courses available on Khan Academy):

Here are some great free books and videos that might help you learn in a more "structured approach":

If you still lack mathematical confidence, check out the Read books section above, where I shared many great books to build a strong mathematical background. You now have a very good math background for machine learning and you are ready to dive in deeper!

No coding background, no problem

No coding background, no problem

Here is a list of some great courses to learn the programming side of machine learning.

Follow online courses

(Optional) Get a better understanding and more guided practice by following some online courses

If you prefer to be more guided and have clear steps to follow, these courses are the best ones to do.

Practice, practice, and practice!

Practice is key

The most important thing in programming is practice. And this applies to machine learning too. It can be hard to find a personal project to practice.

Fortunately, Kaggle exists. This website is full of free courses, tutorials and competitions. You can join competitions for free and just download their data, read about their problem and start coding and testing right away! You can even earn money from winning competitions and it is a great thing to have on your resume. This may be the best way to get experience while learning a lot and even earn money!

You can also create teams for kaggle competition and learn with people! I suggest you join a community to find a team and learn with others, it is always better than alone. Check out the next section for that.

More Resources

Join communities!

Save Cheat Sheets!

Follow the news in the field!

  • Subscribe to YouTube channels that share new papers - Stay up to date with the news in the field!

  • LinkedIn Groups

  • Facebook Groups

    • Artificial Intelligence & Deep Learning - The definitive and most active FB Group on A.I., Neural Networks and Deep Learning. All things new and interesting on the frontier of A.I. and Deep Learning. Neural networks will redefine what it means to be a smart machine in the years to come.
    • Deep learning - Nowadays society tends to be soft and automated evolving into the 4th industrial revolution, which consequently drives the constituents into the swirl of societal upheaval. To survive or take a lead one is supposed to be equipped with associated tools. Machine is becoming smarter and more intelligent. Machine learning is inescapable skill and it requires people to be familiar with. This group is for these people who are interest in the development of their talents to fit in.
  • Newsletters

    • Synced AI TECHNOLOGY & INDUSTRY REVIEW - China's leading media & information provider for AI & Machine Learning.
    • Inside AI - A daily roundup of stories and commentary on Artificial Intelligence, Robotics, and Neurotechnology.
    • AI Weekly - A weekly collection of AI News and resources on Artificial Intelligence and Machine Learning.
    • AI Ethics Weekly - The latest updates in AI Ethics delivered to your inbox every week.
    • What's AI Weekly - The latest updates in AI explained every week.
  • Follow Medium accounts and publications

    • Towards Data Science - "Sharing concepts, ideas, and codes"
    • Towards AI - "The Best of Tech, Science, and Engineering."
    • OneZero - "The undercurrents of the future. A Medium publication about tech and science."
    • What's AI - "Hi, I am Louis (loo·ee, French pronunciation), from Montreal, Canada, also known as "What's AI". I try to share and explain artificial intelligence terms and news the best way I can for everyone. My goal is to demystify the AI “black box” for everyone and sensitize people about the risks of using it."
  • Check this complete GitHub guide to keep up with AI News

Tag me on Twitter @Whats_AI or LinkedIn @Louis (What's AI) Bouchard if you share the list!

If you'd like to support me, I have a Patreon where you can do that. Thank you, and let me know if I missed any good resources!

This guide is still regularly updated.

Learn Machine Learning Algorithms by doing projects in Python and R Programming Language

Learn Machine Learning Algorithms by doing projects in Python and R Programming Language. This repo covers all aspect of Machine Learning Algorithms.

Ravi Chaubey 6 Oct 20, 2022
We have a dataset of user performances. The project is to develop a machine learning model that will predict the salaries of baseball players.

Salary-Prediction-with-Machine-Learning 1. Business Problem Can a machine learning project be implemented to estimate the salaries of baseball players

Ayşe Nur Türkaslan 9 Oct 14, 2022
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
A comprehensive set of fairness metrics for datasets and machine learning models, explanations for these metrics, and algorithms to mitigate bias in datasets and models.

AI Fairness 360 (AIF360) The AI Fairness 360 toolkit is an extensible open-source library containg techniques developed by the research community to h

1.9k Jan 06, 2023
PySpark ML Bank Churn Prediction

PySpark-Bank-Churn Surname: corresponds to the record (row) number and has no effect on the output. CreditScore: contains random values and has no eff

kemalgunay 2 Nov 11, 2021
Turning images into '9-pan' palettes using KMeans clustering from sklearn.

img2palette Turning images into '9-pan' palettes using KMeans clustering from sklearn. Requirements We require: Pillow, for opening and processing ima

Samuel Vidovich 2 Jan 01, 2022
Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them

Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them.

Anirudh Edpuganti 3 Apr 03, 2022
Pandas-method-chaining is a plugin for flake8 that provides method chaining linting for pandas code

pandas-method-chaining pandas-method-chaining is a plugin for flake8 that provides method chaining linting for pandas code. It is a fork from pandas-v

Francis 5 May 14, 2022
All-in-one web-based development environment for machine learning

All-in-one web-based development environment for machine learning Getting Started • Features & Screenshots • Support • Report a Bug • FAQ • Known Issu

3 Feb 03, 2021
Multiple Linear Regression using the LinearRegression class from sklearn.linear_model library

Multiple-Linear-Regression-master - A python program to implement Multiple Linear Regression using the LinearRegression class from sklearn.linear model library

Kushal Shingote 1 Feb 06, 2022
SPCL 48 Dec 12, 2022
PennyLane is a cross-platform Python library for differentiable programming of quantum computers

PennyLane is a cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural ne

PennyLaneAI 1.6k Jan 01, 2023
Predicting diabetes over a five year period using logistic regression and the Pima First-Nation dataset

Diabetes This script uses the Pima First Nations dataset to create a model to predict whether or not an individual will develop Diabetes Mellitus Type

1 Mar 28, 2022
PyCaret is an open-source, low-code machine learning library in Python that automates machine learning workflows.

An open-source, low-code machine learning library in Python 🚀 Version 2.3.5 out now! Check out the release notes here. Official • Docs • Install • Tu

PyCaret 6.7k Jan 08, 2023
Basic Docker Compose for Machine Learning Purposes

Docker-compose for Machine Learning How to use: cd docker-ml-jupyterlab

Chris Chen 1 Oct 29, 2021
Provide an input CSV and a target field to predict, generate a model + code to run it.

automl-gs Give an input CSV file and a target field you want to predict to automl-gs, and get a trained high-performing machine learning or deep learn

Max Woolf 1.8k Jan 04, 2023
Used Logistic Regression, Random Forest, and XGBoost to predict the outcome of Search & Destroy games from the Call of Duty World League for the 2018 and 2019 seasons.

Call of Duty World League: Search & Destroy Outcome Predictions Growing up as an avid Call of Duty player, I was always curious about what factors led

Brett Vogelsang 2 Jan 18, 2022
Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Thines Kumar 1 Jan 31, 2022
A Multipurpose Library for Synthetic Time Series Generation in Python

TimeSynth Multipurpose Library for Synthetic Time Series Please cite as: J. R. Maat, A. Malali, and P. Protopapas, “TimeSynth: A Multipurpose Library

278 Dec 26, 2022
A simple python program that draws a tree for incrementing values using the Collatz Conjecture.

Collatz Conjecture A simple python program that draws a tree for incrementing values using the Collatz Conjecture. Values which can be edited: Length

davidgasinski 1 Oct 28, 2021