An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Related tags

Deep LearningJoEm
Overview

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation

This is an official implementation of the paper "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation", accepted to ICCV2021.

For more information, please checkout the project site [website] and the paper [arXiv].

Pre-requisites

This repository uses the following libraries:

  • Python (3.6)
  • Pytorch (1.8.1)

Getting Started

Datasets

VOC

The structure of data path should be organized as follows:

/dataset/PASCALVOC/VOCdevkit/VOC2012/                         % Pascal VOC datasets root
/dataset/PASCALVOC/VOCdevkit/VOC2012/JPEGImages/              % Pascal VOC images
/dataset/PASCALVOC/VOCdevkit/VOC2012/SegmentationClass/       % Pascal VOC segmentation maps
/dataset/PASCALVOC/VOCdevkit/VOC2012/ImageSets/Segmentation/  % Pascal VOC splits

CONTEXT

The structure of data path should be organized as follows:

/dataset/context/                                 % Pascal CONTEXT dataset root
/dataset/context/59_labels.pth                    % Pascal CONTEXT segmentation maps
/dataset/context/pascal_context_train.txt         % Pascal CONTEXT splits
/dataset/context/pascal_context_val.txt           % Pascal CONTEXT splits
/dataset/PASCALVOC/VOCdevkit/VOC2012/JPEGImages/  % Pascal VOC images

Training

We use DeepLabV3+ with ResNet-101 as our visual encoder. Following ZS3Net, ResNet-101 is initialized with the pre-trained weights for ImageNet classification, where training samples of seen classes are used only. (weights here)

VOC

python train_pascal_zs3setting.py -c configs/config_pascal_zs3setting.json -d 0,1,2,3

CONTEXT

python train_context_zs3setting.py -c configs/config_context_zs3setting.json -d 0,1,2,3

Testing

VOC

python train_pascal_zs3setting.py -c configs/config_pascal_zs3setting.json -d 0,1,2,3 -r <visual encoder>.pth --test

CONTEXT

python train_pascal_zs3setting.py -c configs/config_pascal_zs3setting.json -d 0,1,2,3 -r <visual encoder>.pth --test

Acknowledgements

You might also like...
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

NPMs: Neural Parametric Models Project Page | Paper | ArXiv | Video NPMs: Neural Parametric Models for 3D Deformable Shapes Pablo Palafox, Aljaz Bozic

Official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.
Official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

Vision Transformer with Progressive Sampling This is the official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

 Official implementation of the ICCV 2021 paper
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergence, and present a conditional cross-attention mechanism for fast DETR training. Our approach is motivated by that the cross-attention in DETR relies highly on the content embeddings and that the spatial embeddings make minor contributions, increasing the need for high-quality content embeddings and thus increasing the training difficulty.

The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.
The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

SCOOD-UDG (ICCV 2021) This repository is the official implementation of the paper: Semantically Coherent Out-of-Distribution Detection Jingkang Yang,

Official implementation of the ICCV 2021 paper:
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Official implementation of the ICCV 2021 paper
Official implementation of the ICCV 2021 paper "Joint Inductive and Transductive Learning for Video Object Segmentation"

JOINT This is the official implementation of Joint Inductive and Transductive learning for Video Object Segmentation, to appear in ICCV 2021. @inproce

[ICCV 2021] Official Tensorflow Implementation for
[ICCV 2021] Official Tensorflow Implementation for "Single Image Defocus Deblurring Using Kernel-Sharing Parallel Atrous Convolutions"

KPAC: Kernel-Sharing Parallel Atrous Convolutional block This repository contains the official Tensorflow implementation of the following paper: Singl

Official implementation of Protected Attribute Suppression System, ICCV 2021

Official implementation of Protected Attribute Suppression System, ICCV 2021

Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)
Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)

Learning-Action-Completeness-from-Points Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal A

Comments
  • datasets

    datasets

    Thank you for your work~

    self._cat_dir = self._base_dir / ("%d_labels.pth" % (self.n_categories))

    Could you tell me how to generate the "59_labels.pth" file of the context dataset?

    opened by Wangyiqi 1
  • train_aug.txt

    train_aug.txt

    Dear Authors,

    When I run your code, there is an error:

    FileNotFoundError: [Errno 2] No such file or directory: 'dataset/PASCALVOC/VOCdevkit/VOC2012/ImageSets/Segmentation/train_aug.txt'

    Could you tell me how to get train_aug.txt?

    opened by AmingWu 1
  • dataset split

    dataset split

    After introducing the SBD (Semantic Boundary Dataset), what kind of split (train_split and test_split include how many images ) is adopted by this paper?

    opened by zaiquanyang 0
Owner
CV Lab @ Yonsei University
CV Lab @ Yonsei University
A Python implementation of active inference for Markov Decision Processes

A Python package for simulating Active Inference agents in Markov Decision Process environments. Please see our companion preprint on arxiv for an ove

235 Dec 21, 2022
Adaptive FNO transformer - official Pytorch implementation

Adaptive Fourier Neural Operators: Efficient Token Mixers for Transformers This repository contains PyTorch implementation of the Adaptive Fourier Neu

NVIDIA Research Projects 77 Dec 29, 2022
Python implementation of O-OFDMNet, a deep learning-based optical OFDM system,

O-OFDMNet This includes Python implementation of O-OFDMNet, a deep learning-based optical OFDM system, which uses neural networks for signal processin

Thien Luong 4 Sep 09, 2022
Implementation of E(n)-Transformer, which extends the ideas of Welling's E(n)-Equivariant Graph Neural Network to attention

E(n)-Equivariant Transformer (wip) Implementation of E(n)-Equivariant Transformer, which extends the ideas from Welling's E(n)-Equivariant G

Phil Wang 132 Jan 02, 2023
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: "NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion". NÜWA is a unified multimodal

Microsoft 2.6k Jan 03, 2023
Python inverse kinematics for your robot model based on Pinocchio.

Python inverse kinematics for your robot model based on Pinocchio.

Stéphane Caron 50 Dec 22, 2022
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

In-Place Activated BatchNorm In-Place Activated BatchNorm for Memory-Optimized Training of DNNs In-Place Activated BatchNorm (InPlace-ABN) is a novel

1.3k Dec 29, 2022
Flower classification model that classifies flowers in 10 classes made using transfer learning (~85% accuracy).

flower-classification-inceptionV3 Flower classification model that classifies flowers in 10 classes. Training and validation are done using a pre-anot

Ivan R. Mršulja 1 Dec 12, 2021
Predicting Tweet Sentiment Maching Learning and streamlit

Predicting-Tweet-Sentiment-Maching-Learning-and-streamlit (I prefere using Visual Studio Code ) Open the folder in VS Code Run the first cell in requi

1 Nov 20, 2021
CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation

CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation (CVPR 2021, oral presentation) CoCosNet v2: Full-Resolution Correspondence

Microsoft 308 Dec 07, 2022
Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation"

1 Introduction Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation". The code s

Liang Zhang 10 Dec 10, 2022
Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign language recognition, and full-body gesture control.

Pose Detection Project Description: Human pose estimation from video plays a critical role in various applications such as quantifying physical exerci

Hassan Shahzad 2 Jan 17, 2022
CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes

CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes. CHERRY is based on a deep learning model, which consists of a graph convolutional encoder and a link

Kenneth Shang 12 Dec 15, 2022
This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). This codebase is implemented using JAX, buildin

naruya 132 Nov 21, 2022
Aerial Imagery dataset for fire detection: classification and segmentation (Unmanned Aerial Vehicle (UAV))

Aerial Imagery dataset for fire detection: classification and segmentation using Unmanned Aerial Vehicle (UAV) Title FLAME (Fire Luminosity Airborne-b

79 Jan 06, 2023
Official implementation of "CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding" (CVPR, 2022)

CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding (CVPR'22) Paper Link | Project Page Abstract : Manual an

Mohamed Afham 152 Dec 23, 2022
Differentiable Annealed Importance Sampling (DAIS)

Differentiable Annealed Importance Sampling (DAIS) This repository contains the code to reproduce the DAIS results from the paper Differentiable Annea

Guodong Zhang 6 Dec 26, 2021
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Chongyi Li 457 Jan 03, 2023
NeurIPS 2021, self-supervised 6D pose on category level

SE(3)-eSCOPE video | paper | website Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation Xiaolong Li, Yijia Weng,

Xiaolong 63 Nov 22, 2022
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022