Codes for NeurIPS 2021 paper "Adversarial Neuron Pruning Purifies Backdoored Deep Models"

Overview

Adversarial Neuron Pruning Purifies Backdoored Deep Models

Code for NeurIPS 2021 "Adversarial Neuron Pruning Purifies Backdoored Deep Models" by Dongxian Wu and Yisen Wang.

News

11/08/2021 - Our checkpoints and recipe have been released.

10/31/2021 - Our code has be released.

10/28/2021 - Our paper and slide have be released.

10/26/2021 - Our code and paper will be released soon.

What ANP Does

ANP can easily repair backdoored deep models using limited clean data and limited computational resources. Only 500 clean images from CIFAR-10 and 2000 iterations are used in the displayed example.

Requisite

This code is implemented in PyTorch, and we have tested the code under the following environment settings:

  • python = 3.7.3
  • torch = 1.8.0
  • torchvision = 0.9.0

A Quick Start - How to use it

For a detailed introduction, please refer to our recipe.

Step 1: Train a backdoored DNN

By default, we train a backdoored resnet-18 under badnets with 5% poison rate and class 0 as target label,

python train_backdoor_cifar.py --output-dir './save'

We save trained backdoored model and the trigger info as ./save/last_model.th and ./save/trigger_info.th. Some checkpoints have been released in Google drive or Baidu drive (pwd: bmrb).

Step 2: Optimize masks under neuron perturbations

We optimize the mask for each neuron under neuron perturbations, and save mask values in './save/mask_values.txt' . By default, we only use 500 clean data to optimize.

python optimize_mask_cifar.py --output-dir './save' --checkpoints './save/last_model.th' --trigger-info' './save/trigger_info.th'

Step 3: Prune neurons to defend

You can prune neurons by threshold,

python prune_neuron_cifar.py --output-dir './save' --mask-file './save/mask_values.txt' --checkpoints './save/last_model.th' --trigger-info' './save/trigger_info.th'

Citing this work

If you use our code, please consider cite the following: Dongxian Wu and Yisen Wang. Adversarial Neuron Pruning Purifies Backdoored Deep Models. In NeurIPS, 2021.

@inproceedings{wu2021adversarial,
    title={Adversarial Neuron Pruning Purifies Backdoored Deep Models},
    author={Dongxian Wu and Yisen Wang},
    booktitle={NeurIPS},
    year={2021}
}

If there is any problem, be free to open an issue or contact: [email protected].

Useful Links

[1] Mode Connectivity Repair (MCR) defense: https://github.com/IBM/model-sanitization/tree/master/backdoor

[2] Input-aware Backdoor (IAB) attack: https://github.com/VinAIResearch/input-aware-backdoor-attack-release

Owner
Dongxian Wu
Postdoc at University of Tokyo; PhD at Tsinghua University
Dongxian Wu
Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation

Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation Official PyTorch implementation for the paper Look

Rishabh Jangir 20 Nov 24, 2022
Camera calibration & 3D pose estimation tools for AcinoSet

AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs in the Wild Daniel Joska, Liam Clark, Naoya Muramatsu, Ricardo Jericevich, Fre

African Robotics Unit 42 Nov 16, 2022
This is Unofficial Repo. Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection (CVPR 2021)

Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection This is a PyTorch implementation of the LipForensics paper. This is an U

Minha Kim 2 May 11, 2022
Byzantine-robust decentralized learning via self-centered clipping

Byzantine-robust decentralized learning via self-centered clipping In this paper, we study the challenging task of Byzantine-robust decentralized trai

EPFL Machine Learning and Optimization Laboratory 4 Aug 27, 2022
I explore rock vs. mine prediction using a SONAR dataset

I explore rock vs. mine prediction using a SONAR dataset. Using a Logistic Regression Model for my prediction algorithm, I intend on predicting what an object is based on supervised learning.

Jeff Shen 1 Jan 11, 2022
End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021)

PDVC Official implementation for End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021) [paper] [valse论文速递(Chinese)] This repo supports:

Teng Wang 118 Dec 16, 2022
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)

ELD The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) v

Kaixuan Wei 359 Jan 01, 2023
Omnidirectional Scene Text Detection with Sequential-free Box Discretization (IJCAI 2019). Including competition model, online demo, etc.

Box_Discretization_Network This repository is built on the pytorch [maskrcnn_benchmark]. The method is the foundation of our ReCTs-competition method

Yuliang Liu 266 Nov 24, 2022
A flexible framework of neural networks for deep learning

Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja

Chainer 5.8k Jan 06, 2023
Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Utkarsh Agiwal 1 Feb 03, 2022
This is the winning solution of the Endocv-2021 grand challange.

Endocv2021-winner [Paper] This is the winning solution of the Endocv-2021 grand challange. Dependencies pytorch # tested with 1.7 and 1.8 torchvision

Vajira Thambawita 14 Dec 03, 2022
A medical imaging framework for Pytorch

Welcome to MedicalTorch MedicalTorch is an open-source framework for PyTorch, implementing an extensive set of loaders, pre-processors and datasets fo

Christian S. Perone 799 Jan 03, 2023
Shōgun

The SHOGUN machine learning toolbox Unified and efficient Machine Learning since 1999. Latest release: Cite Shogun: Develop branch build status: Donat

Shōgun ML 2.9k Jan 04, 2023
An implementation of the AlphaZero algorithm for Gomoku (also called Gobang or Five in a Row)

AlphaZero-Gomoku This is an implementation of the AlphaZero algorithm for playing the simple board game Gomoku (also called Gobang or Five in a Row) f

Junxiao Song 2.8k Dec 26, 2022
Decorator for PyMC3

sampled Decorator for reusable models in PyMC3 Provides syntactic sugar for reusable models with PyMC3. This lets you separate creating a generative m

Colin 50 Oct 08, 2021
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

3DIAS_Pytorch This repository contains the official code to reproduce the results from the paper: 3DIAS: 3D Shape Reconstruction with Implicit Algebra

Mohsen Yavartanoo 21 Dec 12, 2022
A repo that contains all the mesh keys needed for mesh backend, along with a code example of how to use them in python

Mesh-Keys A repo that contains all the mesh keys needed for mesh backend, along with a code example of how to use them in python Have been seeing alot

Joseph 53 Dec 13, 2022
The project covers common metrics for super-resolution performance evaluation.

Super-Resolution Performance Evaluation Code The project covers common metrics for super-resolution performance evaluation. Metrics support The script

xmy 10 Aug 03, 2022
Propose a principled and practically effective framework for unsupervised accuracy estimation and error detection tasks with theoretical analysis and state-of-the-art performance.

Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles This project is for the paper: Detecting Errors and Estimating

Jiefeng Chen 13 Nov 21, 2022