RRxIO - Robust Radar Visual/Thermal Inertial Odometry: Robust and accurate state estimation even in challenging visual conditions.

Related tags

Deep Learningrrxio
Overview

RRxIO - Robust Radar Visual/Thermal Inertial Odometry

RRxIO offers robust and accurate state estimation even in challenging visual conditions. RRxIO combines radar ego velocity estimates and Visual Inertial Odometry (VIO) or Thermal Inertial Odometry (TIO) in a single filter by extending rovio. Thus, state estimation in challenging visual conditions (e.g. darkness, direct sunlight, fog) or challenging thermal conditions (e.g. temperature gradient poor environments or outages caused by non uniformity corrections) is possible. In addition, the drift free radar ego velocity estimates reduce scale errors and the overall accuracy as compared to monocular VIO/TIO. RRxIO runs many times faster than real-time on an Intel NUC i7 and achieves real-time on an UpCore embedded computer.

Cite

If you use RRxIO for your academic research, please cite our related paper:

@INPROCEEDINGS{DoerIros2021,
  author={Doer, Christopher and Trommer, Gert F.},
  booktitle={2021 IEEE/RSJ International Conference on Intelligent Rotots and Sytems (IROS)}, 
  title={Radar Visual Inertial Odometry and Radar Thermal Inertial Odometry: Robust Navigation even in Challenging Visual Conditions}, 
  year={2021}}

Demo Result: IRS Radar Thermal Visual Inertial Datasets IROS 2021

Motion Capture Lab (translational RMSE (ATE [m]))

image

Indoor and Outdoors (translational RMSE (ATE [m]))

image

Runtime (Real-time factor)

image

Getting Started

RRxIO depends on:

Additional dependencies are required to run the evaluation framework:

  • sudo apt-get install texlive-latex-extra texlive-fonts-recommended dvipng cm-super
  • pip2 install -U PyYAML colorama ruamel.yaml==0.15.0

The following dependencies are included via git submodules (run once upon setup: git submodule update --init --recursive):

Build in Release is highly recommended:

catkin build rrxio --cmake-args -DCMAKE_BUILD_TYPE=Release

Run Demos

Download the IRS Radar Thermal Visual Inertial Datasets IROS 2021 datasets.

Run the mocap_easy datasets with visual RRxIO:

roslaunch rrxio rrxio_visual_iros_demo.launch rosbag_dir:=<path-to-rtvi_datastets_iros_2021> rosbag:=mocap_easy

Run the outdoor_street datasets with thermal RRxIO:

roslaunch rrxio rrxio_thermal_iros_demo.launch rosbag_dir:=<path-to-rtvi_datastets_iros_2021> rosbag:=outdoor_street

Run Evaluation IRS Radar Thermal Visual Inertial Datasets IROS 2021

The evaluation script is also provided which does an extensive evaluation of RRxIO_10, RRxIO_15, RRxIO_25 on all IRS Radar Thermal Visual Inertial Datasets IROS 2021 datasets:

rosrun rrxio evaluate_iros_datasets.py <path-to-rtvi_datastets_iros_2021>

After some time, the results can be found at <path-to-rtvi_datastets_iros_2021>/results/evaluation/<10/15/25>/evaluation_full_align. These results are also shown in the table above.

Owner
Christopher Doer
Christopher Doer
A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

張致強 14 Dec 02, 2022
Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fusion Framework via Self-Supervised Multi-Task Learning. Code will be available soon.

Official-PyTorch-Implementation-of-TransMEF Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fu

117 Dec 27, 2022
Here we present the implementation in TensorFlow of our work about liver lesion segmentation accepted in the Machine Learning 4 Health Workshop

Detection-aided liver lesion segmentation Here we present the implementation in TensorFlow of our work about liver lesion segmentation accepted in the

Image Processing Group - BarcelonaTECH - UPC 96 Oct 26, 2022
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
A python implementation of Deep-Image-Analogy based on pytorch.

Deep-Image-Analogy This project is a python implementation of Deep Image Analogy.https://arxiv.org/abs/1705.01088. Some results Requirements python 3

Peng Lu 171 Dec 14, 2022
Multiview Dataset Toolkit

Multiview Dataset Toolkit Using multi-view cameras is a natural way to obtain a complete point cloud. However, there is to date only one multi-view 3D

11 Dec 22, 2022
Finetuning Pipeline

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
Utility code for use with PyXLL

pyxll-utils There is no need to use this package as of PyXLL 5. All features from this package are now provided by PyXLL. If you were using this packa

PyXLL 10 Dec 18, 2021
This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners.

LiST (Lite Self-Training) This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners. LiST is short for Lite S

Microsoft 28 Dec 07, 2022
This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans

This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans. TABS relies on a Res-Unet backbone, with a Vision

6 Nov 07, 2022
1st ranked 'driver careless behavior detection' for AI Online Competition 2021, hosted by MSIT Korea.

2021AICompetition-03 본 repo 는 mAy-I Inc. 팀으로 참가한 2021 인공지능 온라인 경진대회 중 [이미지] 운전 사고 예방을 위한 운전자 부주의 행동 검출 모델] 태스크 수행을 위한 레포지토리입니다. mAy-I 는 과학기술정보통신부가 주최하

Junhyuk Park 9 Dec 01, 2022
GeDML is an easy-to-use generalized deep metric learning library

GeDML is an easy-to-use generalized deep metric learning library

Borui Zhang 32 Dec 05, 2022
Research on Tabular Deep Learning (Python package & papers)

Research on Tabular Deep Learning For paper implementations, see the section "Papers and projects". rtdl is a PyTorch-based package providing a user-f

Yura Gorishniy 510 Dec 30, 2022
Code for "3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop"

PyMAF This repository contains the code for the following paper: 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop Hongwe

Hongwen Zhang 450 Dec 28, 2022
BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training

BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training By Likun Cai, Zhi Zhang, Yi Zhu, Li Zhang, Mu Li, Xiangyang Xue. This

290 Dec 29, 2022
RP-GAN: Stable GAN Training with Random Projections

RP-GAN: Stable GAN Training with Random Projections This repository contains a reference implementation of the algorithm described in the paper: Behna

Ayan Chakrabarti 20 Sep 18, 2021
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Xavier 33 Oct 12, 2022
A trusty face recognition research platform developed by Tencent Youtu Lab

Introduction TFace: A trusty face recognition research platform developed by Tencent Youtu Lab. It provides a high-performance distributed training fr

Tencent 956 Jan 01, 2023
All materials of Cassandra Event, Udyam'22

Cassandra 2022 Workspace Workshop Materials Workshop-1 Workshop-2 Workshop-3 Workshop-4 Assignments Assignment-1 Assignment-2 Assignment-3 Resources P

36 Dec 31, 2022
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).

DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho

Runpei Dong 3 Aug 28, 2022