Official PyTorch code of DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization (ICCV 2021 Oral).

Overview

DeepPanoContext (DPC) [Project Page (with interactive results)][Paper]

DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization

Cheng Zhang, Zhaopeng Cui, Cai Chen, Shuaicheng Liu, Bing Zeng, Hujun Bao, Yinda Zhang

teaser pipeline

Introduction

This repo contains data generation, data preprocessing, training, testing, evaluation, visualization code of our ICCV 2021 paper.

Install

Install necessary tools and create conda environment (needs to install anaconda if not available):

sudo apt install xvfb ninja-build freeglut3-dev libglew-dev meshlab
conda env create -f environment.yaml
conda activate Pano3D
python -m pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.7/index.html
python project.py build
  • When running python project.py build, the script will run external/build_gaps.sh which requires password for sudo privilege for apt-get install. Please make sure you are running with a user with sudo privilege. If not, please reach your administrator for installation of these libraries and comment out the corresponding lines then run python project.py build.
  • If you encounter /usr/bin/ld: cannot find -lGL problem when building GAPS, please follow this issue.

Since the dataloader loads large number of variables, before training, please follow this to raise the open file descriptor limits of your system. For example, to permanently change the setting, edit /etc/security/limits.conf with a text editor and add the following lines:

*         hard    nofile      500000
*         soft    nofile      500000
root      hard    nofile      500000
root      soft    nofile      500000

Demo

Download the pretrained checkpoints of detector, layout estimation network, and other modules. Then unzip the folder out into the root directory of current project. Since the given checkpoints are trained with current version of our code, which is a refactored version, the results are slightly better than those reported in our paper.

Please run the following command to predict on the given example in demo/input with our full model:

CUDA_VISIBLE_DEVICES=0 WANDB_MODE=dryrun python main.py configs/pano3d_igibson.yaml --model.scene_gcn.relation_adjust True --mode test

Or run without relation optimization:

CUDA_VISIBLE_DEVICES=0 WANDB_MODE=dryrun python main.py configs/pano3d_igibson.yaml --mode test

The results will be saved to out/pano3d/<demo_id>. If nothing goes wrong, you should get the following results:

rgb.png visual.png
det3d.jpg render.png

Data preparation

Our data is rendered with iGibson. Here, we follow their Installation guide to download iGibson dataset, then render and preprocess the data with our code.

  1. Download iGibson dataset with:

    python -m gibson2.utils.assets_utils --download_ig_dataset
  2. Render panorama with:

    python -m utils.render_igibson_scenes --renders 10 --random_yaw --random_obj --horizon_lo --world_lo

    The rendered dataset should be in data/igibson/.

  3. Make models watertight and render/crop single object image:

    python -m utils.preprocess_igibson_obj --skip_mgn

    The processed results should be in data/igibson_obj/.

  4. (Optional) Before proceeding to the training steps, you could visualize dataset ground-truth of data/igibson/ with:

    python -m utils.visualize_igibson

    Results ('visual.png' and 'render.png') should be saved to folder of each camera like data/igibson/Pomaria_0_int/00007.

Training and Testing

Preparation

  1. We use the pretrained weights of Implicit3DUnderstanding for fine-tuning Bdb3d Estimation Network (BEN) and LIEN+LDIF. Please download the pretrained checkpoint and unzip it into out/total3d/20110611514267/.

  2. We use wandb for logging and visualizing experiments. You can follow their quickstart guide to sign up for a free account and login on your machine with wandb login. The training and testing results will be uploaded to your project "deeppanocontext".

  3. Hint: The <XXX_id> in the commands bellow needs to be replaced with the XXX_id trained in the previous steps.

  4. Hint: In the steps bellow, when training or testing with main.py, you can override yaml configurations with command line parameter:

    CUDA_VISIBLE_DEVICES=0 python main.py configs/layout_estimation_igibson.yaml --train.epochs 100

    This might be helpful when debugging or tuning hyper-parameters.

First Stage

2D Detector

  1. Train 2D detector (Mask RCNN) with:

    CUDA_VISIBLE_DEVICES=0 python train_detector.py

    The trained weights will be saved to out/detector/detector_mask_rcnn

  2. (Optional) When training 2D detector, you could visualize the training process with:

    tensorboard --logdir out/detector/detector_mask_rcnn --bind_all --port 6006
  3. (Optional) Evaluate with:

    CUDA_VISIBLE_DEVICES=0 python test_detector.py

    The results will be saved to out/detector/detector_mask_rcnn/evaluation_{train/test}. Alternatively, you can visualize the prediction results on test set with:

     CUDA_VISIBLE_DEVICES=0 python test_detector.py --visualize --split test

    The visualization will be saved to the folder where the model weights file is.

  4. (Optional) Visualize BFoV detection results:

    CUDA_VISIBLE_DEVICES=0 python main.py configs/detector_2d_igibson.yaml --mode qtest --log.vis_step 1

    The visualization will be saved to out/detector/<detector_test_id>

Layout Estimation

Train layout estimation network (HorizonNet) with:

CUDA_VISIBLE_DEVICES=0 python main.py configs/layout_estimation_igibson.yaml

The checkpoint and visualization results will be saved to out/layout_estimation/<layout_estimation_id>/model_best.pth

Save First Stage Outputs

  1. Save predictions of 2D detector and LEN as dateset for stage 2 training:

    CUDA_VISIBLE_DEVICES=0 WANDB_MODE=dryrun python main.py configs/first_stage_igibson.yaml --mode qtest --weight out/layout_estimation/<layout_estimation_id>/model_best.pth

    The first stage outputs should be saved to data/igibson_stage1

  2. (Optional) Visualize stage 1 dataset with:

    python -m utils.visualize_igibson --dataset data/igibson_stage1 --skip_render

Second Stage

Object Reconstruction

Train object reconstruction network (LIEN+LDIF) with:

CUDA_VISIBLE_DEVICES=0 python main.py configs/ldif_igibson.yaml

The checkpoint and visualization results will be saved to out/ldif/<ldif_id>.

Bdb3D Estimation

Train bdb3d estimation network (BEN) with:

CUDA_VISIBLE_DEVICES=0 python main.py configs/bdb3d_estimation_igibson.yaml

The checkpoint and visualization results will be saved to out/bdb3d_estimation/<bdb3d_estimation_id>.

Relation SGCN

  1. Train Relation SGCN without relation branch:

    CUDA_VISIBLE_DEVICES=0 python main.py configs/relation_scene_gcn_igibson.yaml --model.scene_gcn.output_relation False --model.scene_gcn.loss BaseLoss --weight out/bdb3d_estimation/<bdb3d_estimation_id>/model_best.pth out/ldif/<ldif_id>/model_best.pth

    The checkpoint and visualization results will be saved to out/relation_scene_gcn/<relation_sgcn_wo_rel_id>.

  2. Train Relation SGCN with relation branch:

    CUDA_VISIBLE_DEVICES=0 python main.py configs/relation_scene_gcn_igibson.yaml --weight out/relation_scene_gcn/<relation_sgcn_wo_rel_id>/model_best.pth --train.epochs 20 

    The checkpoint and visualization results will be saved to out/relation_scene_gcn/<relation_sgcn_id>.

  3. Fine-tune Relation SGCN end-to-end with relation optimization:

    CUDA_VISIBLE_DEVICES=0 python main.py configs/relation_scene_gcn_igibson.yaml --weight out/relation_scene_gcn/<relation_sgcn_id>/model_best.pth --model.scene_gcn.relation_adjust True --train.batch_size 1 --val.batch_size 1 --device.num_workers 2 --train.freeze shape_encoder shape_decoder --model.scene_gcn.loss_weights.bdb3d_proj 1.0 --model.scene_gcn.optimize_steps 20 --train.epochs 10

    The checkpoint and visualization results will be saved to out/relation_scene_gcn/<relation_sgcn_ro_id>.

Test Full Model

Run:

CUDA_VISIBLE_DEVICES=0 python main.py configs/relation_scene_gcn_igibson.yaml --weight out/relation_scene_gcn/<relation_sgcn_ro_id>/model_best.pth --log.path out/relation_scene_gcn --resume False --finetune True --model.scene_gcn.relation_adjust True --mode qtest --model.scene_gcn.optimize_steps 100

The visualization results will be saved to out/relation_scene_gcn/<relation_sgcn_ro_test_id>.

Citation

If you find our work and code helpful, please consider cite:

@misc{zhang2021deeppanocontext,
      title={DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization}, 
      author={Cheng Zhang and Zhaopeng Cui and Cai Chen and Shuaicheng Liu and Bing Zeng and Hujun Bao and Yinda Zhang},
      year={2021},
      eprint={2108.10743},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@InProceedings{Zhang_2021_CVPR,
    author    = {Zhang, Cheng and Cui, Zhaopeng and Zhang, Yinda and Zeng, Bing and Pollefeys, Marc and Liu, Shuaicheng},
    title     = {Holistic 3D Scene Understanding From a Single Image With Implicit Representation},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {8833-8842}
}

We thank the following great works:

  • Total3DUnderstanding for their well-structured code. We construct our network based on their well-structured code.
  • Coop for their dataset. We used their processed dataset with 2D detector prediction.
  • LDIF for their novel representation method. We ported their LDIF decoder from Tensorflow to PyTorch.
  • Graph R-CNN for their scene graph design. We adopted their GCN implemention to construct our SGCN.
  • Occupancy Networks for their modified version of mesh-fusion pipeline.

If you find them helpful, please cite:

@InProceedings{Nie_2020_CVPR,
author = {Nie, Yinyu and Han, Xiaoguang and Guo, Shihui and Zheng, Yujian and Chang, Jian and Zhang, Jian Jun},
title = {Total3DUnderstanding: Joint Layout, Object Pose and Mesh Reconstruction for Indoor Scenes From a Single Image},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}
@inproceedings{huang2018cooperative,
  title={Cooperative Holistic Scene Understanding: Unifying 3D Object, Layout, and Camera Pose Estimation},
  author={Huang, Siyuan and Qi, Siyuan and Xiao, Yinxue and Zhu, Yixin and Wu, Ying Nian and Zhu, Song-Chun},
  booktitle={Advances in Neural Information Processing Systems},
  pages={206--217},
  year={2018}
}	
@inproceedings{genova2020local,
    title={Local Deep Implicit Functions for 3D Shape},
    author={Genova, Kyle and Cole, Forrester and Sud, Avneesh and Sarna, Aaron and Funkhouser, Thomas},
    booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
    pages={4857--4866},
    year={2020}
}
@inproceedings{yang2018graph,
    title={Graph r-cnn for scene graph generation},
    author={Yang, Jianwei and Lu, Jiasen and Lee, Stefan and Batra, Dhruv and Parikh, Devi},
    booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
    pages={670--685},
    year={2018}
}
@inproceedings{mescheder2019occupancy,
  title={Occupancy networks: Learning 3d reconstruction in function space},
  author={Mescheder, Lars and Oechsle, Michael and Niemeyer, Michael and Nowozin, Sebastian and Geiger, Andreas},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={4460--4470},
  year={2019}
}
Owner
Cheng Zhang
Cheng Zhang of UESTC 电子科技大学 通信学院 章程
Cheng Zhang
An open framework for Federated Learning.

Welcome to Intel® Open Federated Learning Federated learning is a distributed machine learning approach that enables organizations to collaborate on m

Intel Corporation 397 Dec 27, 2022
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

Tixiao Shan 1.1k Dec 27, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 08, 2023
Official implementation for the paper: Permutation Invariant Graph Generation via Score-Based Generative Modeling

Permutation Invariant Graph Generation via Score-Based Generative Modeling This repo contains the official implementation for the paper Permutation In

64 Dec 29, 2022
This project is used for the paper Differentiable Programming of Isometric Tensor Network

This project is used for the paper "Differentiable Programming of Isometric Tensor Network". (arXiv:2110.03898)

Chenhua Geng 15 Dec 13, 2022
Guiding evolutionary strategies by (inaccurate) differentiable robot simulators @ NeurIPS, 4th Robot Learning Workshop

Guiding Evolutionary Strategies by Differentiable Robot Simulators In recent years, Evolutionary Strategies were actively explored in robotic tasks fo

Vladislav Kurenkov 4 Dec 14, 2021
Supervised & unsupervised machine-learning techniques are applied to the database of weighted P4s which admit Calabi-Yau hypersurfaces.

Weighted Projective Spaces ML Description: The database of 5-vectors describing 4d weighted projective spaces which admit Calabi-Yau hypersurfaces are

Ed Hirst 3 Sep 08, 2022
Practical Single-Image Super-Resolution Using Look-Up Table

Practical Single-Image Super-Resolution Using Look-Up Table [Paper] Dependency Python 3.6 PyTorch glob numpy pillow tqdm tensorboardx 1. Training deep

Younghyun Jo 116 Dec 23, 2022
An NLP library with Awesome pre-trained Transformer models and easy-to-use interface, supporting wide-range of NLP tasks from research to industrial applications.

简体中文 | English News [2021-10-12] PaddleNLP 2.1版本已发布!新增开箱即用的NLP任务能力、Prompt Tuning应用示例与生成任务的高性能推理! 🎉 更多详细升级信息请查看Release Note。 [2021-08-22]《千言:面向事实一致性的生

6.9k Jan 01, 2023
Motion Reconstruction Code and Data for Skills from Videos (SFV)

Motion Reconstruction Code and Data for Skills from Videos (SFV) This repo contains the data and the code for motion reconstruction component of the S

268 Dec 01, 2022
Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing"

One-Shot Free-View Neural Talking Head Synthesis Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Vide

ZLH 406 Dec 23, 2022
Tilted Empirical Risk Minimization (ICLR '21)

Tilted Empirical Risk Minimization This repository contains the implementation for the paper Tilted Empirical Risk Minimization ICLR 2021 Empirical ri

Tian Li 40 Nov 28, 2022
Semantic Edge Detection with Diverse Deep Supervision

Semantic Edge Detection with Diverse Deep Supervision This repository contains the code for our IJCV paper: "Semantic Edge Detection with Diverse Deep

Yun Liu 12 Dec 31, 2022
Twin-deep neural network for semi-supervised learning of materials properties

Deep Semi-Supervised Teacher-Student Material Synthesizability Prediction Citation: Semi-supervised teacher-student deep neural network for materials

MLEG 3 Dec 14, 2022
Implementation of ICCV2021(Oral) paper - VMNet: Voxel-Mesh Network for Geodesic-aware 3D Semantic Segmentation

VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation Created by Zeyu HU Introduction This work is based on our paper VMNet: Voxel-Mes

HU Zeyu 82 Dec 27, 2022
Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Kim Seonghyeon 2.2k Jan 01, 2023
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

Utkarsh Ojha 251 Dec 11, 2022
Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch

Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch Reference Paper URL Author: Yi Tay, Dara Bahri, Donald Metzler

Myeongjun Kim 66 Nov 30, 2022
A PyTorch implementation of " EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks."

EfficientNet A PyTorch implementation of EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. [arxiv] [Official TF Repo] Implemen

AhnDW 298 Dec 10, 2022
Arbitrary Distribution Modeling with Censorship in Real Time 59 2 60 3 Bidding Advertising for KDD'21

Arbitrary_Distribution_Modeling This repo implements the Neighborhood Likelihood Loss (NLL) and Arbitrary Distribution Modeling (ADM, with Interacting

7 Jan 03, 2023