This is a demo app to be used in the video streaming applications

Related tags

Deep LearningMoViDNN
Overview

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks

MoViDNN is an Android application that can be used to evaluate DNN based video quality enhancements for mobile devices. We provide the structure to evaluate both super-resolution, and denoising/deblocking DNNs in this application. However, the structure can be extended easily to adapt to additional approaches such as video frame interpolation.

Moreover, MoViDNN can also be used as a Subjective test environment to evaulate DNN based enhancements.

We use tensorflow-lite as the DNN framework and FFMPEG for the video processing.

We also provide a Python repository that can be used to convert existing Tensorflow/Keras models to tensorflow-lite versions for Android. Preparation

DNN Evaluation

MoViDNN can be used as a platform to evaluate the performance of video quality enhancement DNNs. It provides objective metrics (PSNR and SSIM) for the whole video along with measuring the execution performance of the device (execution time, executed frames per second).

DNN Configuration

This is the first screen of the DNN test and in this screen the DNN, the accelerator, and input videos are selected which then will be used during the DNN evaluation.

DNN Execution

Once the configuration is completed, DNN execution activity is run. It begins with extracting each frame from the input video using FFMpeg and saving them into a temporary folder. Afterward, the DNN is applied for each frame, and results are saved into another temporary folder. Once the DNN applied frames are ready, they are converted to a video using FFMpeg again. Finally, objective metric calculations are done with FFMpeg using the DNN applied video and the input video.

In this step, DNN applied video is saved into DNNResults/Videos/ folder, and CSV file containing objective metrics for each video is saved into DNNResults/Metrics/folder.

Adding New DNNs and Videos

MoVİDNN comes with 5 test videos, 2 SR models (ESPCN, EVSRNet), and one deblocking model (DnCNN). It is possible to add additional test videos and DNNs to MoViDNN.

To add a new DNN model, use the quantization script to prepare it for MoViDNN. Once it is done, you can put your model into /MoViDNN/Networks/folder on your mobile device's storage and it will be ready for evaluation. Similarly, if you want to add new test videos, you can simply move them into /MoViDNN/InputVideos/folder in your device storage.

MoViDNN
│
└───Networks
│   │   dncnn_x1.tflite
│   │   espcn_x2.tflite
│   │
│   │  <YourModel>.py
└───InputVideos
│   │   SoccerGame.mp4
│   │   Traffic.mp4
│   │
│   │  <YourVideo>.mp4
..

Subjective Evaluation

MoViDNN can also be used as a subjective test platform to evaluate the DNN applied videos. Once the DNN evaluation is done for a given network and the resulting video is saved, subjective test can be started.

In the first screen, instructions are shown to the tester. Once they are read carefully, the test can be started. Subjective test part of the MoViDNN displays all the selected videos in a random order. After each video, the tester is asked to rate the video quality from 1 to 5.

In the end, ratings are saved into a CSV file which can be used later.

Authors

  • Ekrem Çetinkaya - Christian Doppler Laboratory ATHENA, Alpen-Adria-Universitaet Klagenfurt - [email protected]
  • Minh Nguyen - Christian Doppler Laboratory ATHENA, Alpen-Adria-Universitaet Klagenfurt - [email protected]
Owner
ATHENA Christian Doppler (CD) Laboratory
Adaptive Streaming over HTTP and Emerging Networked Multimedia Services
ATHENA Christian Doppler (CD) Laboratory
Implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning"

Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning This is the implementation of the paper "Self-Promoted Prototype Refinement

Kai Zhu 78 Dec 02, 2022
Time series annotation library.

CrowdCurio Time Series Annotator Library The CrowdCurio Time Series Annotation Library implements classification tasks for time series. Features Suppo

CrowdCurio 51 Sep 15, 2022
Code for "Discovering Non-monotonic Autoregressive Orderings with Variational Inference" (paper and code updated from ICLR 2021)

Discovering Non-monotonic Autoregressive Orderings with Variational Inference Description This package contains the source code implementation of the

Xuanlin (Simon) Li 10 Dec 29, 2022
PFLD pytorch Implementation

PFLD-pytorch Implementation of PFLD A Practical Facial Landmark Detector by pytorch. 1. install requirements pip3 install -r requirements.txt 2. Datas

zhaozhichao 669 Jan 02, 2023
The MLOps platform for innovators 🚀

​ DS2.ai is an integrated AI operation solution that supports all stages from custom AI development to deployment. It is an AI-specialized platform service that collects data, builds a training datas

9 Jan 03, 2023
One line to host them all. Bootstrap your image search case in minutes.

One line to host them all. Bootstrap your image search case in minutes. Survey NOW gives the world access to customized neural image search in just on

Jina AI 403 Dec 30, 2022
A Peer-to-peer Platform for Secure, Privacy-preserving, Decentralized Data Science

PyGrid is a peer-to-peer network of data owners and data scientists who can collectively train AI models using PySyft. PyGrid is also the central serv

OpenMined 615 Jan 03, 2023
A PyTorch implementation of Learning to learn by gradient descent by gradient descent

Intro PyTorch implementation of Learning to learn by gradient descent by gradient descent. Run python main.py TODO Initial implementation Toy data LST

Ilya Kostrikov 300 Dec 11, 2022
This is the dataset for testing the robustness of various VO/VIO methods

KAIST VIO dataset This is the dataset for testing the robustness of various VO/VIO methods You can download the whole dataset on KAIST VIO dataset Ind

1 Sep 01, 2022
Sign Language Translation with Transformers (COLING'2020, ECCV'20 SLRTP Workshop)

transformer-slt This repository gathers data and code supporting the experiments in the paper Better Sign Language Translation with STMC-Transformer.

Kayo Yin 107 Dec 27, 2022
Systematic generalisation with group invariant predictions

Requirements are Python 3, TensorFlow v1.14, Numpy, Scipy, Scikit-Learn, Matplotlib, Pillow, Scikit-Image, h5py, tqdm. Experiments were run on V100 GPUs (16 and 32GB).

Faruk Ahmed 30 Dec 01, 2022
Official code repository for "Exploring Neural Models for Query-Focused Summarization"

Query-Focused Summarization Official code repository for "Exploring Neural Models for Query-Focused Summarization" This is a work in progress. Expect

Salesforce 29 Dec 18, 2022
NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions Overview NUANCED is a user-centric conversational recommen

Facebook Research 18 Dec 28, 2021
Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021, Pytorch)

S2VD Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021) Requirements and Dependencies Ubuntu 16.04, cuda 10.0 Python 3.6.10, P

Zongsheng Yue 53 Nov 23, 2022
Score refinement for confidence-based 3D multi-object tracking

Score refinement for confidence-based 3D multi-object tracking Our video gives a brief explanation of our Method. This is the official code for the pa

Cognitive Systems Research Group 47 Dec 26, 2022
Code for the Higgs Boson Machine Learning Challenge organised by CERN & EPFL

A method to solve the Higgs boson challenge using Least Squares - Novae This project is the Project 1 of EPFL CS-433 Machine Learning. The project is

Giacomo Orsi 1 Nov 09, 2021
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study Supplementary Materials for Kentaro Matsuura, Junya Honda, Imad

Kentaro Matsuura 4 Nov 01, 2022
Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation

FCN_MSCOCO_Food_Segmentation Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation Input data: [http://mscoco.org/dataset/#ove

Alexander Kalinovsky 11 Jan 08, 2019
Implementation of Online Label Smoothing in PyTorch

Online Label Smoothing Pytorch implementation of Online Label Smoothing (OLS) presented in Delving Deep into Label Smoothing. Introduction As the abst

83 Dec 14, 2022