Code for the Higgs Boson Machine Learning Challenge organised by CERN & EPFL

Overview

A method to solve the Higgs boson challenge using Least Squares - Novae

This project is the Project 1 of EPFL CS-433 Machine Learning. The project is the same as the Higgs Boson Machine Learning Challenge posted on Kaggle. The dataset and the detailed description can also be found in the GitHub repository of the course.

Team name: Novae

Team members: Giacomo Orsi, Vittorio Rossi, Chun-Tso Tsai

About the Project

The task of this project is to train a model based on the provided train.csv to have the best prediction on the data given in test.csv or any other general case.

We built our model for the problem using regularized linear regression after applying some data cleaning and features engineering techniques. A report describing our approach and our results can be found in the file report.pdf. In the end, we obtained an accuracy of 0.836 and an F1 score of 0.751 on the test.csv dataset.

Instructions

  • The project runs under Python 3.8 and requires NumPy=1.19.
  • Please make sure to place train.csv and test.csv inside the data folder. Those files can be downloaded here.
  • Go to the script/ folder and execute run.py. A model will be trained with the given hyper-parameters and predictions for the test dataset will be outputed in the file out.csv.

Modules

implementations.py

Contains the implementations of different learning algorithms. Including

  • Least squares linear regression
    • least_squares: Direct computation from linear equations.
    • least_squares_GD: Gradient descent.
    • least_squares_SGD: Stochastic gradient descent.
    • ridge_regression: Regularized linear regression from direct computation.
  • Logistic regression
    • logistic_regression: Gradient descent
    • reg_logistic_regression: Gradient descent with regularization.

There are also some helper functions in this file to facilitate the above functions.

data_processing.py

Calls the following files to process the data.

  • data_cleaning.py: Contains functions used to
    1. Categorize data into subgroups.
    2. Replace missing values with the median.
    3. Standardize the features.
  • feature_engineering.py: Contains functions used to generate our interpretable features.

run.py

Generates the submission .csv file based on the data of test.csv stored in the folder data/. Our optimized model is also defined in this file.

Some helper Functions

  • models.py: Create the models for predicting the labels for new data points without true labels.
  • expansions.py: Contains a function to apply polynomial expansion to our features to add extra degrees of freedom for our models.
  • proj1_helpers.py: Contains functions which loads the .csv files as training or testing data, and create the .csv file for submission.
  • cross_validation.py: Contains a function to build the index for k-fold cross_validation.
  • disk_helper.py: Save/load the NumPy array to disk for further usage. Useful for saving hyper-parameters when trying a long training process.

Notebook

It is possible to use the Jupyter notebook project_notebook.ipynb located in the scripts folder to train the best hyper-parameters for the model. In the notebook it is possible to cross-validate a logistic and a least square regression model over given lambdas and degrees.

Owner
Giacomo Orsi
CS Student at EPFL. Previously at University of Bologna
Giacomo Orsi
Python implementation of "Multi-Instance Pose Networks: Rethinking Top-Down Pose Estimation"

MIPNet: Multi-Instance Pose Networks This repository is the official pytorch python implementation of "Multi-Instance Pose Networks: Rethinking Top-Do

Rawal Khirodkar 57 Dec 12, 2022
PyTorch implementation of SimSiam: Exploring Simple Siamese Representation Learning

SimSiam: Exploring Simple Siamese Representation Learning This is a PyTorch implementation of the SimSiam paper: @Article{chen2020simsiam, author =

Facebook Research 834 Dec 30, 2022
For IBM Quantum Challenge Africa 2021, 9 September (07:00 UTC) - 20 September (23:00 UTC).

IBM Quantum Challenge Africa 2021 To ensure Africa is able to apply quantum computing to solve problems relevant to the continent, the IBM Research La

Qiskit Community 48 Dec 25, 2022
Code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectrograms, using the PyTorch Lightning.

stereoEEG2speech We provide code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectro

15 Nov 11, 2022
This repository contains an implementation of the Permutohedral Attention Module in Pytorch

Permutohedral_attention_module This repository contains an implementation of the Permutohedral Attention Module

Samuel JOUTARD 26 Nov 27, 2022
Algebraic effect handlers in Python

PyEffect: Algebraic effects in Python What IDK. Usage effects.handle(operation, handlers=None) effects.set_handler(effect, handler) Supported effects

Greg Werbin 5 Dec 27, 2021
Multistream CNN for Robust Acoustic Modeling

Multistream Convolutional Neural Network (CNN) A multistream CNN is a novel neural network architecture for robust acoustic modeling in speech recogni

ASAPP Research 37 Sep 21, 2022
Contextual Attention Localization for Offline Handwritten Text Recognition

CALText This repository contains the source code for CALText model introduced in "CALText: Contextual Attention Localization for Offline Handwritten T

0 Feb 17, 2022
A Python Package for Convex Regression and Frontier Estimation

pyStoNED pyStoNED is a Python package that provides functions for estimating multivariate convex regression, convex quantile regression, convex expect

Sheng Dai 17 Jan 08, 2023
Automatic Image Background Subtraction

Automatic Image Background Subtraction This repo contains set of scripts for automatic one-shot image background subtraction task using the following

Oleg Sémery 6 Dec 05, 2022
Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide range of illumination variants of a single image.

Deep Illuminator Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide

George Chogovadze 52 Nov 29, 2022
This repository contains the code for the paper in EMNLP 2021: "HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression".

HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression This repository contains the code for the paper in EM

Chenhe Dong 2 Mar 24, 2022
bespoke tooling for offensive security's Windows Usermode Exploit Dev course (OSED)

osed-scripts bespoke tooling for offensive security's Windows Usermode Exploit Dev course (OSED) Table of Contents Standalone Scripts egghunter.py fin

epi 268 Jan 05, 2023
Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

TensorFlow implementation of 3D Convolutional Neural Networks for Speaker Verification - Official Project Page - Pytorch Implementation This repositor

Amirsina Torfi 753 Dec 17, 2022
Official code for 'Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning' [ICCV 2021]

RTFM This repo contains the Pytorch implementation of our paper: Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Lear

Yu Tian 242 Jan 08, 2023
State-Relabeling Adversarial Active Learning

State-Relabeling Adversarial Active Learning Code for SRAAL [2020 CVPR Oral] Requirements torch = 1.6.0 numpy = 1.19.1 tqdm = 4.31.1 AL Results The

10 Jul 14, 2022
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
YOLOv5🚀 reproduction by Guo Quanhao using PaddlePaddle

YOLOv5-Paddle YOLOv5 🚀 reproduction by Guo Quanhao using PaddlePaddle 支持AutoBatch 支持AutoAnchor 支持GPU Memory 快速开始 使用AIStudio高性能环境快速构建YOLOv5训练(PaddlePa

QuanHao Guo 20 Nov 14, 2022
Multiple Object Extraction from Aerial Imagery with Convolutional Neural Networks

This is an implementation of Volodymyr Mnih's dissertation methods on his Massachusetts road & building dataset and my original methods that are publi

Shunta Saito 255 Sep 07, 2022
50-days-of-Statistics-for-Data-Science - This repository consist of a 50-day program

50-days-of-Statistics-for-Data-Science - This repository consist of a 50-day program. All the statistics required for the complete understanding of data science will be uploaded in this repository.

komal_lamba 22 Dec 09, 2022