An easy-to-use feature store

Overview

ByteHub PyPI Latest Release Issues Issues Code style: black

ByteHub logo

An easy-to-use feature store.

💾 What is a feature store?

A feature store is a data storage system for data science and machine-learning. It can store raw data and also transformed features, which can be fed straight into an ML model or training script.

Feature stores allow data scientists and engineers to be more productive by organising the flow of data into models.

The Bytehub Feature Store is designed to:

  • Be simple to use, with a Pandas-like API;
  • Require no complicated infrastructure, running on a local Python installation or in a cloud environment;
  • Be optimised towards timeseries operations, making it highly suited to applications such as those in finance, energy, forecasting; and
  • Support simple time/value data as well as complex structures, e.g. dictionaries.

It is built on Dask to support large datasets and cluster compute environments.

🦉 Features

  • Searchable feature information and metadata can be stored locally using SQLite or in a remote database.
  • Timeseries data is saved in Parquet format using Dask, making it readable from a wide range of other tools. Data can reside either on a local filesystem or in a cloud storage service, e.g. AWS S3.
  • Supports timeseries joins, along with filtering and resampling operations to make it easy to load and prepare datasets for ML training.
  • Feature engineering steps can be implemented as transforms. These are saved within the feature store, and allows for simple, resusable preparation of raw data.
  • Time travel can retrieve feature values based on when they were created, which can be useful for forecasting applications.
  • Simple APIs to retrieve timeseries dataframes for training, or a dictionary of the most recent feature values, which can be used for inference.

Also available as ☁️ ByteHub Cloud: a ready-to-use, cloud-hosted feature store.

📖 Documentation and tutorials

See the ByteHub documentation and notebook tutorials to learn more and get started.

🚀 Quick-start

Install using pip:

pip install bytehub

Create a local SQLite feature store by running:

import bytehub as bh
import pandas as pd

fs = bh.FeatureStore()

Data lives inside namespaces within each feature store. They can be used to separate projects or environments. Create a namespace as follows:

fs.create_namespace(
    'tutorial', url='/tmp/featurestore/tutorial', description='Tutorial datasets'
)

Create a feature inside this namespace which will be used to store a timeseries of pre-prepared data:

fs.create_feature('tutorial/numbers', description='Timeseries of numbers')

Now save some data into the feature store:

dts = pd.date_range('2020-01-01', '2021-02-09')
df = pd.DataFrame({'time': dts, 'value': list(range(len(dts)))})

fs.save_dataframe(df, 'tutorial/numbers')

The data is now stored, ready to be transformed, resampled, merged with other data, and fed to machine-learning models.

We can engineer new features from existing ones using the transform decorator. Suppose we want to define a new feature that contains the squared values of tutorial/numbers:

@fs.transform('tutorial/squared', from_features=['tutorial/numbers'])
def squared_numbers(df):
    # This transform function receives dataframe input, and defines a transform operation
    return df ** 2 # Square the input

Now both features are saved in the feature store, and can be queried using:

df_query = fs.load_dataframe(
    ['tutorial/numbers', 'tutorial/squared'],
    from_date='2021-01-01', to_date='2021-01-31'
)

To connect to ByteHub Cloud, first register for an account, then use:

fs = bh.FeatureStore("https://api.bytehub.ai")

This will allow you to store features in your own private namespace on ByteHub Cloud, and save datasets to an AWS S3 storage bucket.

🐾 Roadmap

  • Tasks to automate updates to features using orchestration tools like Airflow
Owner
ByteHub AI
ByteHub AI
A Python package for modular causal inference analysis and model evaluations

Causal Inference 360 A Python package for inferring causal effects from observational data. Description Causal inference analysis enables estimating t

International Business Machines 506 Dec 19, 2022
Efficient matrix representations for working with tabular data

Efficient matrix representations for working with tabular data

QuantCo 70 Dec 14, 2022
💬 Python scripts to parse Messenger, Hangouts, WhatsApp and Telegram chat logs into DataFrames.

Chatistics Python 3 scripts to convert chat logs from various messaging platforms into Pandas DataFrames. Can also generate histograms and word clouds

Florian 893 Jan 02, 2023
Very basic but functional Kakuro solver written in Python.

kakuro.py Very basic but functional Kakuro solver written in Python. It uses a reduction to exact set cover and Ali Assaf's elegant implementation of

Louis Abraham 4 Jan 15, 2022
A Pythonic introduction to methods for scaling your data science and machine learning work to larger datasets and larger models, using the tools and APIs you know and love from the PyData stack (such as numpy, pandas, and scikit-learn).

This tutorial's purpose is to introduce Pythonistas to methods for scaling their data science and machine learning work to larger datasets and larger models, using the tools and APIs they know and lo

Coiled 102 Nov 10, 2022
API>local_db>AWS_RDS - Disclaimer! All data used is for educational purposes only.

APIlocal_dbAWS_RDS Disclaimer! All data used is for educational purposes only. ETL pipeline diagram. Aim of project By creating a fully working pipe

0 Apr 25, 2022
Building house price data pipelines with Apache Beam and Spark on GCP

This project contains the process from building a web crawler to extract the raw data of house price to create ETL pipelines using Google Could Platform services.

1 Nov 22, 2021
PyPDC is a Python package for calculating asymptotic Partial Directed Coherence estimations for brain connectivity analysis.

Python asymptotic Partial Directed Coherence and Directed Coherence estimation package for brain connectivity analysis. Free software: MIT license Doc

Heitor Baldo 3 Nov 26, 2022
Average time per match by division

HW_02 Unzip matches.rar to access .json files for matches. Get an API key to access their data at: https://developer.riotgames.com/ Average time per m

11 Jan 07, 2022
Package for decomposing EMG signals into motor unit firings, as used in Formento et al 2021.

EMGDecomp Package for decomposing EMG signals into motor unit firings, created for Formento et al 2021. Based heavily on Negro et al, 2016. Supports G

13 Nov 01, 2022
A script to "SHUA" H1-2 map of Mercenaries mode of Hearthstone

lushi_script Introduction This script is to "SHUA" H1-2 map of Mercenaries mode of Hearthstone Installation Make sure you installed python=3.6. To in

210 Jan 02, 2023
Weather analysis with Python, SQLite, SQLAlchemy, and Flask

Surf's Up Weather analysis with Python, SQLite, SQLAlchemy, and Flask Overview The purpose of this analysis was to examine weather trends (precipitati

Art Tucker 1 Sep 05, 2021
Data Competition: automated systems that can detect whether people are not wearing masks or are wearing masks incorrectly

Table of contents Introduction Dataset Model & Metrics How to Run Quickstart Install Training Evaluation Detection DATA COMPETITION The COVID-19 pande

Thanh Dat Vu 1 Feb 27, 2022
Very useful and necessary functions that simplify working with data

Additional-function-for-pandas Very useful and necessary functions that simplify working with data random_fill_nan(module_name, nan) - Replaces all sp

Alexander Goldian 2 Dec 02, 2021
Feature Detection Based Template Matching

Feature Detection Based Template Matching The classification of the photos was made using the OpenCv template Matching method. Installation Use the pa

Muhammet Erem 2 Nov 18, 2021
Elasticsearch tool for easily collecting and batch inserting Python data and pandas DataFrames

ElasticBatch Elasticsearch buffer for collecting and batch inserting Python data and pandas DataFrames Overview ElasticBatch makes it easy to efficien

Dan Kaslovsky 21 Mar 16, 2022
Pandas and Spark DataFrame comparison for humans

DataComPy DataComPy is a package to compare two Pandas DataFrames. Originally started to be something of a replacement for SAS's PROC COMPARE for Pand

Capital One 259 Dec 24, 2022
This project is the implementation template for HW 0 and HW 1 for both the programming and non-programming tracks

This project is the implementation template for HW 0 and HW 1 for both the programming and non-programming tracks

Donald F. Ferguson 4 Mar 06, 2022
The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

Bell Eapen 14 Jan 02, 2023
Parses data out of your Google Takeout (History, Activity, Youtube, Locations, etc...)

google_takeout_parser parses both the Historical HTML and new JSON format for Google Takeouts caches individual takeout results behind cachew merge mu

Sean Breckenridge 27 Dec 28, 2022