Parses data out of your Google Takeout (History, Activity, Youtube, Locations, etc...)

Overview

google_takeout_parser

  • parses both the Historical HTML and new JSON format for Google Takeouts
  • caches individual takeout results behind cachew
  • merge multiple takeouts into unique events

Parses data out of your Google Takeout (History, Activity, Youtube, Locations, etc...)

This doesn't handle all cases, but I have yet to find a parser that does, so here is my attempt at parsing what I see as the most useful info from it. The Google Takeout is pretty particular, and the contents of the directory depend on what you select while exporting. Unhandled files will warn, though feel free to PR a parser or create an issue if this doesn't parse some part you want.

This can take a few minutes to parse depending on what you have in your Takeout (especially while using the old HTML format), so this uses cachew to cache the function result for each Takeout you may have. That means this'll take a few minutes the first time parsing a takeout, but then only a few seconds every subsequent time.

Since the Takeout slowly removes old events over time, I would recommend periodically (personally I do it once every few months) backing up your data, to not lose any old events and get data from new ones. To use, go to takeout.google.com; For Reference, once on that page, I hit Deselect All, then select:

  • Chrome
  • Google Play Store
  • Location History
    • Select JSON as format
  • My Activity
    • Select JSON as format
  • Youtube and Youtube Music
    • Select JSON as format
    • In options, deselect music-library-songs, music-uploads and videos

The process for getting these isn't that great -- you have to manually go to takeout.google.com every few months, select what you want to export info for, and then it puts the zipped file into your google drive. You can tell it to run it at specific intervals, but I personally haven't found that to be that reliable.

This was extracted out of my HPI modules, which was in turn modified from the google files in karlicoss/HPI

Installation

Requires python3.7+

To install with pip, run:

pip install git+https://github.com/seanbreckenridge/google_takeout_parser

Usage

CLI Usage

Can be access by either google_takeout_parser or python -m google_takeout_parser. Offers a basic interface to list/clear the cache directory, and/or parse a takeout and interact with it in a REPL:

To clear the cachew cache: google_takeout_parser cache_dir clear

To parse a takeout:

$ google_takeout_parser parse ~/data/Unpacked_Takout --cache
Parsing...
Interact with the export using res

In [1]: res[-2]
Out[1]: PlayStoreAppInstall(title='Hangouts', device_name='motorola moto g(7) play', dt=datetime.datetime(2020, 8, 2, 15, 51, 50, 180000, tzinfo=datetime.timezone.utc))

In [2]: len(res)
Out[2]: 236654

Also contains a small utility command to help move/extract the google takeout:

$ google_takeout_parser move --from ~/Downloads/takeout*.zip --to-dir ~/data/google_takeout --extract
Extracting /home/sean/Downloads/takeout-20211023T070558Z-001.zip to /tmp/tmp07ua_0id
Moving /tmp/tmp07ua_0id/Takeout to /home/sean/data/google_takeout/Takeout-1634993897
$ ls -1 ~/data/google_takeout/Takeout-1634993897
archive_browser.html
Chrome
'Google Play Store'
'Location History'
'My Activity'
'YouTube and YouTube Music'

Library Usage

Assuming you maintain an unpacked view, e.g. like:

 $ tree -L 1 ./Takeout-1599315526
./Takeout-1599315526
├── Google Play Store
├── Location History
├── My Activity
└── YouTube and YouTube Music

To parse one takeout:

from pathlib import Path
from google_takeout.path_dispatch import TakeoutParser
tp = TakeoutParser(Path("/full/path/to/Takeout-1599315526"))
# to check if files are all handled
tp.dispatch_map()
# to parse without caching the results in ~/.cache/google_takeout_parser
uncached = list(tp.parse())
# to parse with cachew cache https://github.com/karlicoss/cachew
cached = list(tp.cached_parse())

To merge takeouts:

from pathlib import Path
from google_takeout.merge import cached_merge_takeouts
results = list(cached_merge_takeouts([Path("/full/path/to/Takeout-1599315526"), Path("/full/path/to/Takeout-1634971143")]))

The events this returns is a combination of all types in the models.py (to support easy serialization with cachew), to filter to a particular just do an isinstance check:

>> len(locations) 99913 ">
from google_takeout_parser.models import Location
takeout_generator = TakeoutParser(Path("/full/path/to/Takeout")).cached_parse()
locations = list(filter(lambda e: isinstance(e, Location), takeout_generator))
>>> len(locations)
99913

I personally exclusively use this through my HPI google takeout file, as a configuration layer to locate where my takeouts are on disk, and since that 'automatically' unzips the takeouts (I store them as the zips), i.e., doesn't require me to maintain an unpacked view

Contributing

Just to give a brief overview, to add new functionality (parsing some new folder that this doesn't currently support), you'd need to:

  • Add a model for it in models.py, which a key property function which describes each event uniquely (used to merge takeout events); add it to the Event Union
  • Write a function which takes the Path to the file you're trying to parse and converts it to the model you created (See examples in parse_json.py). If its relatively complicated (e.g. HTML), ideally extract a div from the page and add a test for it so its obvious when/if the format changes.
  • Add a regex match for the file path to the DEFAULT_HANDLER_MAP

Tests

git clone 'https://github.com/seanbreckenridge/google_takeout_parser'
cd ./google_takeout_parser
pip install '.[testing]'
mypy ./google_takeout_parser
pytest
Owner
Sean Breckenridge
:)
Sean Breckenridge
pipeline for migrating lichess data into postgresql

How Long Does It Take Ordinary People To "Get Good" At Chess? TL;DR: According to 5.5 years of data from 2.3 million players and 450 million games, mo

Joseph Wong 182 Nov 11, 2022
Get mutations in cluster by querying from LAPIS API

Cluster Mutation Script Get mutations appearing within user-defined clusters. Usage Clusters are defined in the clusters dict in main.py: clusters = {

neherlab 1 Oct 22, 2021
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 09, 2023
CleanX is an open source python library for exploring, cleaning and augmenting large datasets of X-rays, or certain other types of radiological images.

cleanX CleanX is an open source python library for exploring, cleaning and augmenting large datasets of X-rays, or certain other types of radiological

Candace Makeda Moore, MD 20 Jan 05, 2023
Data cleaning tools for Business analysis

Datacleaning datacleaning tools for Business analysis This program is made for Vicky's work. You can use it, too. 数据清洗 该数据清洗工具是为了商业分析 这个程序是为了Vicky的工作而

Lin Jian 3 Nov 16, 2021
Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with Theano

PyMC3 is a Python package for Bayesian statistical modeling and Probabilistic Machine Learning focusing on advanced Markov chain Monte Carlo (MCMC) an

PyMC 7.2k Dec 30, 2022
Extract data from a wide range of Internet sources into a pandas DataFrame.

pandas-datareader Up to date remote data access for pandas, works for multiple versions of pandas. Installation Install using pip pip install pandas-d

Python for Data 2.5k Jan 09, 2023
PyPSA: Python for Power System Analysis

1 Python for Power System Analysis Contents 1 Python for Power System Analysis 1.1 About 1.2 Documentation 1.3 Functionality 1.4 Example scripts as Ju

758 Dec 30, 2022
Improving your data science workflows with

Make Better Defaults Author: Kjell Wooding [email protected] This is the git re

Kjell Wooding 18 Dec 23, 2022
Common bioinformatics database construction

biodb Common bioinformatics database construction 1.taxonomy (Substance classification database) Download the database wget -c https://ftp.ncbi.nlm.ni

sy520 2 Jan 04, 2022
Pandas on AWS - Easy integration with Athena, Glue, Redshift, Timestream, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretManager, PostgreSQL, MySQL, SQLServer and S3 (Parquet, CSV, JSON and EXCEL).

AWS Data Wrangler Pandas on AWS Easy integration with Athena, Glue, Redshift, Timestream, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretMana

Amazon Web Services - Labs 3.3k Jan 04, 2023
Parses data out of your Google Takeout (History, Activity, Youtube, Locations, etc...)

google_takeout_parser parses both the Historical HTML and new JSON format for Google Takeouts caches individual takeout results behind cachew merge mu

Sean Breckenridge 27 Dec 28, 2022
Two phase pipeline + StreamlitTwo phase pipeline + Streamlit

Two phase pipeline + Streamlit This is an example project that demonstrates how to create a pipeline that consists of two phases of execution. In betw

Rick Lamers 1 Nov 17, 2021
Import, connect and transform data into Excel

xlwings_query Import, connect and transform data into Excel. Description The concept is to apply data transformations to a main query object. When the

George Karakostas 1 Jan 19, 2022
Codes for the collection and predictive processing of bitcoin from the API of coinmarketcap

Codes for the collection and predictive processing of bitcoin from the API of coinmarketcap

Teo Calvo 5 Apr 26, 2022
Python script to automate the plotting and analysis of percentage depth dose and dose profile simulations in TOPAS.

topas-create-graphs A script to automatically plot the results of a topas simulation Works for percentage depth dose (pdd) and dose profiles (dp). Dep

Sebastian Schäfer 10 Dec 08, 2022
Spectral Analysis in Python

SPECTRUM : Spectral Analysis in Python contributions: Please join https://github.com/cokelaer/spectrum contributors: https://github.com/cokelaer/spect

Thomas Cokelaer 280 Dec 16, 2022
An implementation of the largeVis algorithm for visualizing large, high-dimensional datasets, for R

largeVis This is an implementation of the largeVis algorithm described in (https://arxiv.org/abs/1602.00370). It also incorporates: A very fast algori

336 May 25, 2022
Semi-Automated Data Processing

Perform semi automated exploratory data analysis, feature engineering and feature selection on provided dataset by visualizing every possibilities on each step and assisting the user to make a meanin

Arun Singh Babal 1 Jan 17, 2022
This is an example of how to automate Ridit Analysis for a dataset with large amount of questions and many item attributes

This is an example of how to automate Ridit Analysis for a dataset with large amount of questions and many item attributes

Ishan Hegde 1 Nov 17, 2021