Code for EMNLP2021 paper "Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training"

Related tags

Deep LearningVoCapXLM
Overview

VoCapXLM

Code for EMNLP2021 paper Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training

Environment

DockerFile: dancingsoul/pytorch:VoCapXLM

Manully build the sentencepiece with following command:

cd sentencepiece
mkdir build
cd build
cmake ..
make -j $(nproc)
sudo make install
sudo ldconfig -v

Data Preparation

  1. Create a folder with mkdir -p monolingual_text in the root of this project.
  2. Sample monolingual corpus for each language individually, move them to the monolingual_text directory, named after their language codes (e.g., en.txt).
  3. Sample the multilingual corpus from monolingual corpora with the following command:
python sample_multilingual_corpus.py \
    --lang_prob_path ./lang_prob_wiki.json \ 
    --input_dir ./monolingual_text/ \ 
    --output_path ./multilingual_corpus.text \
    --n_sample <n_sample> --beta <beta> --rescale

where the options are described as follows:

  • --lang_prob_path: the probability of sampling training instances from each language during pre-training, lang_prob_wiki.json is counted on Wikipedia corpus and the probabilities are rescaled with alpha=0.7 from Equation (3) in our paper.
  • --n_sample: number of sentences in the multilingual corpus where the final multilingual sentencepiece model is trained, the default value is 20000000.
  • --rescale: further rescale the probability with another value beta from Equation (2) in our paper.
  • --beta: the rescaling factor in Equation (2), the default value is 0.7.

Training Monolingual SentencePiece Models

Train monolingual sentencepiece models in different sizes to obtain vocabularies with different ALP, i.e., language-specific vocabulary capacity.

python train_mono_spm.py \
    --input_dir ./monolingual_text/ \
    --output_dir ~/monolingual_spm/ \
    --languages <all_languages> \
    --min_vocab_size <min_vocab_size> \
    --max_vocab_size <max_vocab_size> \
    --delta_vocab_size <delta_vocab_size> \
    --n_sample <n_sample>

where the options are described as follows:

  • --languages: all languages under the monolingual_text directory, separated with ,, e.g. en,fr,zh.
  • --min_vocab_size: minimum vocabulary size allocated for each language, the default value is 1000.
  • --max_vocab_size: maximum vocabulary size allocated for each language, the default value is 50000.
  • --delta_vocab_size: the value of interval to learn vocabularies, the default value is 1000.
  • --n_sample: the number of sentences to calculate ALP for each language, the default value is 1000000.

or you can download our pre-trained monolingual sentencepiece models and vocabularies from [here][2].

Allocating Multilingual Vocabulary

Allocate the multilingual vocabulary from monolingual vocabularies:

python train_vocap.py \
    --lang_prob_path ./lang_prob_wiki.json \
    --input_dir ./monolingual_spm/ \
    --output_path ./multilingual.vocab \
    --beta <beta> --rescale --target_vocab_size <target_vocab_size>

where the options are described as follows:

  • --lang_prob_path: same as the above.
  • --rescale: same as the above.
  • --beta: same as the above.
  • --target_vocab_size: the desired vocabulary size of the multilingual vocabulary, the default value is 500000.

Then Use sentencepiece to train the tokenizer given the multilingual vocabulary:

spm_train --input=./multilingual_corpus.text --model_prefix=<model_name> --vocab_size=<target_vocab_size> \
--character_coverage=0.9995 --model_type=unigram --shuffle_input_sentence=true \
--input_sentence_size=<input_sentence_size> --vocab_path=./multilingual.vocab

where the options are described as follows:

  • --model_prefix: output model name prefix. <model_name>.model and <model_name>.vocab are generated.
  • --character_coverage: amount of characters covered by the model.
  • --vocab_size: same as --target_vocab_size.
  • --vocab_path: the required subwords in the final learned tokenizer.

Paper

Please cite our paper \cite{bo2021vocapxlm} if you found the resources in the repository useful.

@inproceedings{bo2021vocapxlm,
author = {Bo Zheng, Li Dong, Shaohan Huang, Saksham Singhal, Wanxiang Che, Ting Liu, Xia Song, Furu Wei},
booktitle = {Proceedings of EMNLP 2021},
title = {{Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training}},
year = {2021}
}

Reference

  1. https://github.com/google/sentencepiece
  2. https://drive.google.com/file/d/1VttgE30xo-i1ig5xsMF_7R4AB2sA5J9F/view?usp=sharing
Owner
Bo Zheng
Bo Zheng
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Bin Xiao 175 Jan 08, 2023
Biomarker identification for COVID-19 Severity in BALF cells Single-cell RNA-seq data

scBALF Covid-19 dataset Analysis Here is the Github page that has the codes for the bioinformatics pipeline described in the paper COVID-Datathon: Bio

Nami Niyakan 2 May 21, 2022
Official Implementation for the paper DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification

DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification Official Implementation for the pape

Anh M. Nguyen 36 Dec 28, 2022
Pytorch implementation for M^3L

Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification (CVPR 2021) Introduction This is the Py

Yuyang Zhao 45 Dec 26, 2022
Multi-Stage Episodic Control for Strategic Exploration in Text Games

XTX: eXploit - Then - eXplore Requirements First clone this repo using git clone https://github.com/princeton-nlp/XTX.git Please create two conda envi

Princeton Natural Language Processing 9 May 24, 2022
Kaggle Feedback Prize - Evaluating Student Writing 15th solution

Kaggle Feedback Prize - Evaluating Student Writing 15th solution First of all, I would like to thank the excellent notebooks and discussions from http

Lingyuan Zhang 6 Mar 24, 2022
FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation

FCN_via_Keras FCN FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This

Kento Watanabe 48 Aug 30, 2022
An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

Luna Yue Huang 41 Oct 29, 2022
Text and code for the forthcoming second edition of Think Bayes, by Allen Downey.

Think Bayes 2 by Allen B. Downey The HTML version of this book is here. Think Bayes is an introduction to Bayesian statistics using computational meth

Allen Downey 1.5k Jan 08, 2023
A hobby project which includes a hand-gesture based virtual piano using a mobile phone camera and OpenCV library functions

Overview This is a hobby project which includes a hand-gesture controlled virtual piano using an android phone camera and some OpenCV library. My moti

Abhinav Gupta 1 Nov 19, 2021
v objective diffusion inference code for JAX.

v-diffusion-jax v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The models

Katherine Crowson 186 Dec 21, 2022
Generic template to bootstrap your PyTorch project with PyTorch Lightning, Hydra, W&B, and DVC.

NN Template Generic template to bootstrap your PyTorch project. Click on Use this Template and avoid writing boilerplate code for: PyTorch Lightning,

Luca Moschella 520 Dec 30, 2022
A list of multi-task learning papers and projects.

This page contains a list of papers on multi-task learning for computer vision. Please create a pull request if you wish to add anything. If you are interested, consider reading our recent survey pap

svandenh 297 Dec 17, 2022
Watch faces morph into each other with StyleGAN 2, StyleGAN, and DCGAN!

FaceMorpher FaceMorpher is an innovative project to get a unique face morph (or interpolation for geeks) on a website. Yes, this means you can see fac

Anish 9 Jun 24, 2022
Self Governing Neural Networks (SGNN): the Projection Layer

Self Governing Neural Networks (SGNN): the Projection Layer A SGNN's word projections preprocessing pipeline in scikit-learn In this notebook, we'll u

Guillaume Chevalier 22 Nov 06, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 09, 2023
An educational AI robot based on NVIDIA Jetson Nano.

JetBot Looking for a quick way to get started with JetBot? Many third party kits are now available! JetBot is an open-source robot based on NVIDIA Jet

NVIDIA AI IOT 2.6k Dec 29, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
Official pytorch implementation of the IrwGAN for unaligned image-to-image translation

IrwGAN (ICCV2021) Unaligned Image-to-Image Translation by Learning to Reweight [Update] 12/15/2021 All dataset are released, trained models and genera

37 Nov 09, 2022
ALBERT-pytorch-implementation - ALBERT pytorch implementation

ALBERT-pytorch-implementation developing... 모델의 개념이해를 돕기 위한 구현물로 현재 변수명을 상세히 적었고

BG Kim 3 Oct 06, 2022