Official Implementation for the paper DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification

Overview

DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification

Official Implementation for the paper DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification (2021) by Hai Phan and Anh Nguyen.

If you use this software, please consider citing:

@article{hai2021deepface,
  title={DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification},
  author={Hai Phan, Anh Nguyen},
  journal={arXiv preprint arXiv:2112.04016},
  year={2021}
}

1. Requirements

Python >= 3.5
Pytorch > 1.0
Opencv >= 3.4.4
pip install tqmd

2. Download datasets and pretrained models

  1. Download LFW, out-of-distribution (OOD) LFW test sets, and pretrained models: Google Drive

  2. Create the following folders:

mkdir data
mkdir pretrained
  1. Extract LFW datasets (e.g. lfw_crop_96x112.tar.gz) to data/
  2. Copy models (e.g. resnet18_110.pth) to pretrained/

3. How to run

3.1 Run examples

  • Run testing LFW images

    • -mask, -sunglass, -crop: flags for using corresponding OOD query images (i.e., faces with masks or sunglasses or randomly-cropped images).
    bash run_test.sh
    
  • Run demo: The demo gives results of top-5 images of stage 1 and stage 2 (including flow visualization of EMD).

    • -mask: image retrieval using a masked-face query image given a gallery of normal LFW images.
    • -sunglass and -crop: similar to the setup of -mask.
    • The results will be saved in the results/demo directory.
    bash run_demo.sh
    
  • Run retrieval using the full LFW gallery

    • Set the argument args.data_folder to data in .sh files.

3.2 Reproduce results

  • Make sure lfw-align-128 and lfw-align-128-crop70 dataset in data/ directory (e.g. data/lfw-align-128-crop70), ArcFace [2] model resnet18_110.pth in pretrained/ directory (e.g. pretrained/resnet18_110.pth). Run the following commands to reproduce the Table 1 results in our paper.

    • Arguments:

      • Methods can be apc, uniform, or sc
      • -l: 4 or 8 for 4x4 and 8x8 respectively.
      • -a: alpha parameter mentioned in the paper.
    • Normal LFW with 1680 classes:

    python test_face.py -method apc -fm arcface -d lfw_1680 -a -1 -data_folder data -l 4
    
    • LFW-crop:
    python test_face.py -method apc -fm arcface -d lfw -a 0.7 -data_folder data -l 4 -crop 
    
    • Note: The full LFW dataset have 5,749 people for a total of 13,233 images; however, only 1,680 people have two or more images (See LFW for details). However, in our normal LFW dataset, the identical images will not be considered in face identification. So, the difference between lfw and lfw_1680 is that the lfw setup uses the full LFW (including people with a single image) but the lfw_1680 uses only 1,680 people who have two or more images.
  • For other OOD datasets, run the following command:

    • LFW-mask:
    python test_face.py -method apc -fm arcface -d lfw -a 0.7 -data_folder data -l 4 -mask 
    
    • LFW-sunglass:
    python test_face.py -method apc -fm arcface -d lfw -a 0.7 -data_folder data -l 4 -sunglass 
    

3.3 Run visualization with two images

python visualize_faces.py -method [methods] -fm [face models] -model_path [model dir] -in1 [1st image] -in2 [2nd image] -weight [1/0: showing weight heatmaps] 

The results are in results/flow and results/heatmap (if -weight flag is on).

3.4 Use your own images

  1. Facial alignment. See align_face.py for details.
pip install scikit-image
pip install face-alignment
  • For making face alignment with size of 160x160 for Arcface (128x128) and FaceNet (160x160), the reference points are as follow (see function alignment in align_face.py).
ref_pts = [ [61.4356, 54.6963],[118.5318, 54.6963], [93.5252, 90.7366],[68.5493, 122.3655],[110.7299, 122.3641]]
crop_size = (160, 160)
  1. Create a folder including all persons (folders: name of person) and put it to '/data'
  2. Create a txt file with format: [image_path],[label] of that folder (See lfw file for details)
  3. Modify face loader: Add your txt file in function: get_face_dataloader.

4. License

MIT

5. References

  1. W. Zhao, Y. Rao, Z. Wang, J. Lu, Zhou. Towards interpretable deep metric learning with structural matching, ICCV 2021 DIML
  2. J. Deng, J. Guo, X. Niannan, and StefanosZafeiriou. Arcface: Additive angular margin loss for deepface recognition, CVPR 2019 Arcface Pytorch
  3. H. Wang, Y. Wang, Z. Zhou, X. Ji, DihongGong, J. Zhou, Z. Li, W. Liu. Cosface: Large margin cosine loss for deep face recognition, CVPR 2018 CosFace Pytorch
  4. F. Schroff, D. Kalenichenko, J. Philbin. Facenet: A unified embedding for face recognition and clustering. CVPR 2015 FaceNet Pytorch
  5. L. Weiyang, W. Yandong, Y. Zhiding, L. Ming, R. Bhiksha, S. Le. SphereFace: Deep Hypersphere Embedding for Face Recognition, CVPR 2017 sphereface, sphereface pytorch
  6. Chi Zhang, Yujun Cai, Guosheng Lin, Chunhua Shen. Deepemd: Differentiable earth mover’s distance for few-shotlearning, CVPR 2020 paper
Owner
Anh M. Nguyen
Learning in the deep...
Anh M. Nguyen
A dataset for online Arabic calligraphy

Calliar Calliar is a dataset for Arabic calligraphy. The dataset consists of 2500 json files that contain strokes manually annotated for Arabic callig

ARBML 114 Dec 28, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation

deep-hist PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation PyT

Winfried Lötzsch 10 Dec 06, 2022
Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph

Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph Model Description Open-CyKG is a framework that is constructed using an attenti

Injy Sarhan 34 Jan 05, 2023
Code for Paper: Self-supervised Learning of Motion Capture

Self-supervised Learning of Motion Capture This is code for the paper: Hsiao-Yu Fish Tung, Hsiao-Wei Tung, Ersin Yumer, Katerina Fragkiadaki, Self-sup

Hsiao-Yu Fish Tung 87 Jul 25, 2022
Code for `BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery`, Neurips 2021

This folder contains the code for 'Scalable Variational Approaches for Bayesian Causal Discovery'. Installation To install, use conda with conda env c

14 Sep 21, 2022
Main repository for the HackBio'2021 Virtual Internship Experience for #Team-Greider ❤️

Hello 🤟 #Team-Greider The team of 20 people for HackBio'2021 Virtual Bioinformatics Internship 💝 🖨️ 👨‍💻 HackBio: https://thehackbio.com 💬 Ask us

Siddhant Sharma 7 Oct 20, 2022
ROS-UGV-Control-Interface - Control interface which can be used in any UGV

ROS-UGV-Control-Interface Cam Closed: Cam Opened:

Ahmet Fatih Akcan 1 Nov 04, 2022
PyTorch implementation of Off-policy Learning in Two-stage Recommender Systems

Off-Policy-2-Stage This repo provides a PyTorch implementation of the MovieLens experiments for the following paper: Off-policy Learning in Two-stage

Jiaqi Ma 25 Dec 12, 2022
BRepNet: A topological message passing system for solid models

BRepNet: A topological message passing system for solid models This repository contains the an implementation of BRepNet: A topological message passin

Autodesk AI Lab 42 Dec 30, 2022
Python parser for DTED data.

DTED Parser This is a package written in pure python (with help from numpy) to parse and investigate Digital Terrain Elevation Data (DTED) files. This

Ben Bonenfant 12 Dec 18, 2022
Unsupervised Learning of Multi-Frame Optical Flow with Occlusions

This is a Pytorch implementation of Janai, J., Güney, F., Ranjan, A., Black, M. and Geiger, A., Unsupervised Learning of Multi-Frame Optical Flow with

Anurag Ranjan 110 Nov 02, 2022
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU

WarpDrive is a flexible, lightweight, and easy-to-use open-source reinforcement learning (RL) framework that implements end-to-end multi-agent RL on a single GPU (Graphics Processing Unit).

Salesforce 334 Jan 06, 2023
A simple API wrapper for Discord interactions.

Your ultimate Discord interactions library for discord.py. About | Installation | Examples | Discord | PyPI About What is discord-py-interactions? dis

james 641 Jan 03, 2023
ProjectOxford-ClientSDK - This repo has moved :house: Visit our website for the latest SDKs & Samples

This project has moved 🏠 We heard your feedback! This repo has been deprecated and each project has moved to a new home in a repo scoped by API and p

Microsoft 970 Nov 28, 2022
A Large Scale Benchmark for Individual Treatment Effect Prediction and Uplift Modeling

large-scale-ITE-UM-benchmark This repository contains code and data to reproduce the results of the paper "A Large Scale Benchmark for Individual Trea

10 Nov 19, 2022
PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
BERTMap: A BERT-Based Ontology Alignment System

BERTMap: A BERT-based Ontology Alignment System Important Notices The relevant paper was accepted in AAAI-2022. Arxiv version is available at: https:/

KRR 36 Dec 24, 2022
Framework for training options with different attention mechanism and using them to solve downstream tasks.

Using Attention in HRL Framework for training options with different attention mechanism and using them to solve downstream tasks. Requirements GPU re

5 Nov 03, 2022