SNIPS: Solving Noisy Inverse Problems Stochastically

Overview

SNIPS: Solving Noisy Inverse Problems Stochastically

This repo contains the official implementation for the paper SNIPS: Solving Noisy Inverse Problems Stochastically.

by Bahjat Kawar, Gregory Vaksman, and Michael Elad, Computer Science Department, Technion.

Running Experiments

Dependencies

Run the following conda line to install all necessary python packages for our code and set up the snips environment.

conda env create -f environment.yml

The environment includes cudatoolkit=11.0. You may change that depending on your hardware.

Project structure

main.py is the file that you should run for both training and sampling. Execute python main.py --help to get its usage description:

usage: main.py [-h] --config CONFIG [--seed SEED] [--exp EXP] --doc DOC
               [--comment COMMENT] [--verbose VERBOSE] [-i IMAGE_FOLDER]
               [-n NUM_VARIATIONS] [-s SIGMA_0] [--degradation DEGRADATION]

optional arguments:
  -h, --help            show this help message and exit
  --config CONFIG       Path to the config file
  --seed SEED           Random seed
  --exp EXP             Path for saving running related data.
  --doc DOC             A string for documentation purpose. Will be the name
                        of the log folder.
  --comment COMMENT     A string for experiment comment
  --verbose VERBOSE     Verbose level: info | debug | warning | critical
  -i IMAGE_FOLDER, --image_folder IMAGE_FOLDER
                        The folder name of samples
  -n NUM_VARIATIONS, --num_variations NUM_VARIATIONS
                        Number of variations to produce
  -s SIGMA_0, --sigma_0 SIGMA_0
                        Noise std to add to observation
  --degradation DEGRADATION
                        Degradation: inp | deblur_uni | deblur_gauss | sr2 |
                        sr4 | cs4 | cs8 | cs16

Configuration files are in config/. You don't need to include the prefix config/ when specifying --config . All files generated when running the code is under the directory specified by --exp. They are structured as:

<exp> # a folder named by the argument `--exp` given to main.py
├── datasets # all dataset files
│   ├── celeba # all CelebA files
│   └── lsun # all LSUN files
├── logs # contains checkpoints and samples produced during training
│   └── <doc> # a folder named by the argument `--doc` specified to main.py
│      └── checkpoint_x.pth # the checkpoint file saved at the x-th training iteration
├── image_samples # contains generated samples
│   └── <i>
│       ├── stochastic_variation.png # samples generated from checkpoint_x.pth, including original, degraded, mean, and std   
│       ├── results.pt # the pytorch tensor corresponding to stochastic_variation.png
│       └── y_0.pt # the pytorch tensor containing the input y of SNIPS

Downloading data

You can download the aligned and cropped CelebA files from their official source here. The LSUN files can be downloaded using this script. For our purposes, only the validation sets of LSUN bedroom and tower need to be downloaded.

Running SNIPS

If we want to run SNIPS on CelebA for the problem of super resolution by 2, with added noise of standard deviation 0.1, and obtain 3 variations, we can run the following

python main.py -i celeba --config celeba.yml --doc celeba -n 3 --degradation sr2 --sigma_0 0.1

Samples will be saved in /image_samples/celeba .

The available degradations are: Inpainting (inp), Uniform deblurring (deblur_uni), Gaussian deblurring (deblur_gauss), Super resolution by 2 (sr2) or by 4 (sr4), Compressive sensing by 4 (cs4), 8 (cs8), or 16 (cs16). The sigma_0 can be any value from 0 to 1.

Pretrained Checkpoints

Link: https://drive.google.com/drive/folders/1217uhIvLg9ZrYNKOR3XTRFSurt4miQrd?usp=sharing

These checkpoint files are provided as-is from the authors of NCSNv2. You can use the CelebA, LSUN-bedroom, and LSUN-tower datasets' pretrained checkpoints. We assume the --exp argument is set to exp.

Acknowledgement

This repo is largely based on the NCSNv2 repo, and uses modified code from this repo for implementing the blurring matrix.

References

If you find the code/idea useful for your research, please consider citing

@article{kawar2021snips,
  title={SNIPS: Solving Noisy Inverse Problems Stochastically},
  author={Kawar, Bahjat and Vaksman, Gregory and Elad, Michael},
  journal={arXiv preprint arXiv:2105.14951},
  year={2021}
}
Owner
Bahjat Kawar
Bahjat Kawar
BuildingNet: Learning to Label 3D Buildings

BuildingNet This is the implementation of the BuildingNet architecture described in this paper: Paper: BuildingNet: Learning to Label 3D Buildings Arx

16 Nov 07, 2022
A PyTorch implementation of DenseNet.

A PyTorch Implementation of DenseNet This is a PyTorch implementation of the DenseNet-BC architecture as described in the paper Densely Connected Conv

Brandon Amos 771 Dec 15, 2022
Publication describing 3 ML examples at NSLS-II and interfacing into Bluesky

Machine learning enabling high-throughput and remote operations at large-scale user facilities. Overview This repository contains the source code and

BNL 4 Sep 24, 2022
Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees"

Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees" Installa

0 Oct 13, 2021
Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation

Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation The code of: Context Decoupling Augmentation for Weakly Supervised Semanti

54 Dec 12, 2022
A system used to detect whether a person is wearing a medical mask or not.

Mask_Detection_System A system used to detect whether a person is wearing a medical mask or not. To open the program, please follow these steps: Make

Mohamed Emad 0 Nov 17, 2022
Code release for NeuS

NeuS We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inpu

Peng Wang 813 Jan 04, 2023
Ray tracing of a Schwarzschild black hole written entirely in TensorFlow.

TensorGeodesic Ray tracing of a Schwarzschild black hole written entirely in TensorFlow. Dependencies: Python 3 TensorFlow 2.x numpy matplotlib About

5 Jan 15, 2022
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition

ademxapp Visual applications by the University of Adelaide In designing our Model A, we did not over-optimize its structure for efficiency unless it w

Zifeng Wu 338 Dec 12, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022
General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)

General Virtual Sketching Framework for Vector Line Art - SIGGRAPH 2021 Paper | Project Page Outline Dependencies Testing with Trained Weights Trainin

Haoran MO 118 Dec 27, 2022
Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021

Geometric Vector Perceptron Implementation of Geometric Vector Perceptron, a simple circuit with 3d rotation equivariance for learning over large biom

Phil Wang 59 Nov 24, 2022
Sum-Product Probabilistic Language

Sum-Product Probabilistic Language SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic infere

MIT Probabilistic Computing Project 57 Nov 17, 2022
Dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
Face Recognize System on camera AI OAK1

FRS on OAK1 Face Recognize System on camera OAK1 This project contains our work that deploy on camera OAK1 Features Anti-Spoofing Face detection Face

Tran Anh Tuan 6 Aug 08, 2022
Solving Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge

Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge Associated code for the paper Zero-Shot Learning in Named Entity Recognitio

Søren Hougaard Mulvad 13 Dec 25, 2022
Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2

CoaDTI Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2 Abstract Environment The test was conducted i

Layne_Huang 7 Nov 14, 2022
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021
fklearn: Functional Machine Learning

fklearn: Functional Machine Learning fklearn uses functional programming principles to make it easier to solve real problems with Machine Learning. Th

nubank 1.4k Dec 07, 2022