Official implementation for paper Render In-between: Motion Guided Video Synthesis for Action Interpolation

Overview

Render In-between: Motion Guided Video Synthesis for Action Interpolation

[Paper] [Supp] [arXiv] [4min Video]

This is the official Pytorch implementation for our work. Our proposed framework is able to synthesize challenging human videos in an action interpolation setting. This repository contains three subdirectories, including code and scripts for preparing our collected HumanSlomo dataset, the implementation of human motion modeling network trained on the large-scale AMASS dataset, as well as the pose-guided neural rendering model to synthesize video frames from poses. Please check each subfolder for the detailed information and how to execute the code.

HumanSlomo Dataset

We collected a set of high FPS creative commons of human videos from Youtube. The videos are manually split into several continuous clips for training and test. You can also build your video dataset using the provided scripts.

Human Motion Modeling

Our human motion model is trained on a large scale motion capture dataset AMASS. We provide code to synthesize 2D human motion sequences for training from the SMPL parameters defined in AMASS. You can also simply use the pre-trained model to interpolate low-frame-rate noisy human body joints to high-frame-rate motion sequences.

Pose Guided Neural Rendering

The neural rendering model learned to map the pose sequences back to the original video domain. The final result is composed with the background warping from DAIN and the generated human body according to the predicted blending mask autoregressively. The model is trained in a conditional image generation setting, given only low-frame-rate videos as training data. Therefore, you can train your custom neural rendering model by constructing your own video dataset.

Quick Start

⬇️ example.zip [MEGA] (25.4MB)

Download this example action clip which includes necessary input files for our pipeline.

The first step is generating high FPS motion from low FPS poses with our motion modeling network.

cd Human_Motion_Modelling
python inference.py --pose-dir ../example/input_poses --save-dir ../example/ --upsample-rate 2

⬇️ checkpoints.zip [MEGA] (147.2MB)

Next we will map high FPS poses back to video frames with our pose-guided neural rendering. Download the checkpoint files to the corresponding folder to run the model.

cd Pose_Guided_Neural_Rendering
python inference.py --input-dir ../example/ --save-dir ../example/

Citation

@inproceedings{ho2021render,
    author = {Hsuan-I Ho, Xu Chen, Jie Song, Otmar Hilliges},
    title = {Render In-between: Motion GuidedVideo Synthesis for Action Interpolation},
    booktitle = {BMVC},
    year = {2021}
}

Acknowledgement

We use the pre-processing code in AMASS to synthesize our motion dataset. AlphaPose is used for generating 2D human body poses. DAIN is used for warping background images. Our human motion modeling network is based on the transformer backbone in DERT. Our pose-guided neural rendering model is based on imaginaire. We sincerely thank these authors for their awesome work.

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated

37 Dec 15, 2022
Time-Optimal Planning for Quadrotor Waypoint Flight

Time-Optimal Planning for Quadrotor Waypoint Flight This is an example implementation of the paper "Time-Optimal Planning for Quadrotor Waypoint Fligh

Robotics and Perception Group 38 Dec 02, 2022
Code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge.

Open Sesame This repository contains the code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge. Credits We built the project on t

9 Jul 24, 2022
Code implementation of "Sparsity Probe: Analysis tool for Deep Learning Models"

Sparsity Probe: Analysis tool for Deep Learning Models This repository is a limited implementation of Sparsity Probe: Analysis tool for Deep Learning

3 Jun 09, 2021
Gin provides a lightweight configuration framework for Python

Gin Config Authors: Dan Holtmann-Rice, Sergio Guadarrama, Nathan Silberman Contributors: Oscar Ramirez, Marek Fiser Gin provides a lightweight configu

Google 1.7k Jan 03, 2023
Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Henghui Ding 143 Dec 23, 2022
Reinforcement Learning for Portfolio Management

qtrader Reinforcement Learning for Portfolio Management Why Reinforcement Learning? Learns the optimal action, rather than models the market. Adaptive

Angelos Filos 406 Jan 01, 2023
Companion repository to the paper accepted at the 4th ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities

Transfer learning approach to bicycle sharing systems station location planning using OpenStreetMap Companion repository to the paper accepted at the

Politechnika Wrocławska - repozytorium dla informatyków 4 Oct 24, 2022
PyTorch code for MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning

MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning PyTorch code for our ACL 2020 paper "MART: Memory-Augmented Recur

Jie Lei 雷杰 151 Jan 06, 2023
DARTS-: Robustly Stepping out of Performance Collapse Without Indicators

[ICLR'21] DARTS-: Robustly Stepping out of Performance Collapse Without Indicators [openreview] Authors: Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun

55 Nov 01, 2022
StyleGAN2-ada for practice

This version of the newest PyTorch-based StyleGAN2-ada is intended mostly for fellow artists, who rarely look at scientific metrics, but rather need a working creative tool. Tested on Python 3.7 + Py

vadim epstein 170 Nov 16, 2022
WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction"

BiRTE WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction" Requirements The main requirements are: py

9 Dec 27, 2022
Compare outputs between layers written in Tensorflow and layers written in Pytorch

Compare outputs of Wasserstein GANs between TensorFlow vs Pytorch This is our testing module for the implementation of improved WGAN in Pytorch Prereq

Hung Nguyen 72 Dec 20, 2022
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 73 Dec 24, 2022
LONG-TERM SERIES FORECASTING WITH QUERYSELECTOR – EFFICIENT MODEL OF SPARSEATTENTION

Query Selector Here you can find code and data loaders for the paper https://arxiv.org/pdf/2107.08687v1.pdf . Query Selector is a novel approach to sp

MORAI 62 Dec 17, 2022
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Gradio 11.7k Jan 07, 2023
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
An OpenAI-Gym Package for Training and Testing Reinforcement Learning algorithms with OpenSim Models

Authors: Utkarsh A. Mishra and Dr. Dimitar Stanev Advisors: Dr. Dimitar Stanev and Prof. Auke Ijspeert, Biorobotics Laboratory (BioRob), EPFL Video Pl

Utkarsh Mishra 16 Dec 13, 2022
Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

Osman Alpaydın 5 Jun 24, 2022
Learning Neural Painters Fast! using PyTorch and Fast.ai

The Joy of Neural Painting Learning Neural Painters Fast! using PyTorch and Fast.ai Blogpost with more details: The Joy of Neural Painting The impleme

Libre AI 72 Nov 10, 2022