Implementation of MA-Trace - a general-purpose multi-agent RL algorithm for cooperative environments.

Related tags

Deep Learningseed_rl
Overview

Off-Policy Correction For Multi-Agent Reinforcement Learning

This repository is the official implementation of Off-Policy Correction For Multi-Agent Reinforcement Learning. It is based on SEED RL, commit 5f07ba2a072c7a562070b5a0b3574b86cd72980f.

Requirements

Execution of our code is done within Docker container, you must install Docker according to the instructions provided by the authors. The specific requirements for our project are prepared as dockerfile (docker/Dockerfile.starcraft) and installed inside a container during the first execution of running script. Before running training, firstly build its base image by running:

./docker_base/marlgrid/docker/build_base.sh

Note that to execute docker commands you may need to use sudo or install Docker in rootless mode.

Training

To train a MA-Trace model, run the following command:

./run_local.sh starcraft vtrace [nb of actors] [configuration]

The [nb of actors] specifies the number of workers used for training, should be a positive natural number.

The [configuration] specifies the hyperparameters of training.

The most important hyperparameters are:

  • learning_rate the learning rate
  • entropy_cost initial entropy cost
  • target_entropy final entropy cost
  • entropy_cost_adjustment_speed how fast should entropy cost be adjusted towards the final value
  • frames_stacked the number of stacked frames
  • batch_size the size of training batches
  • discounting the discount factor
  • full_state_critic whether to use full state as input to critic network, set False to use only agents' observations
  • is_centralized whether to perform centralized or decentralized training
  • task_name name of the SMAC task to train on, see the section below

There are other parameters to configure, listed in the files, though of minor importance.

The running script provides evaluation metrics during training. They are displayed using tmux, consider checking the navigation controls.

For example, to use default parameters and one actor, run:

./run_local.sh starcraft vtrace 1 ""

To train the algorithm specified in the paper:

  • MA-Trace (obs): ./run_local.sh starcraft vtrace 1 "--full_state_critic=False"
  • MA-Trace (full): ./run_local.sh starcraft vtrace 1 "--full_state_critic=True"
  • DecMa-Trace: ./run_local.sh starcraft vtrace 1 "--is_centralized=False"
  • MA-Trace (obs) with 3 stacked observations: ./run_local.sh starcraft vtrace 1 "--full_state_critic=False --frames_stacked=3"
  • MA-Trace (full) with 4 stacked observations: ./run_local.sh starcraft vtrace 1 "--full_state_critic=True --frames_stacked=4"

Note that to match the perforance presented in the paper it is required to use higher number of actors, e.g. 20.

StarCraft Multi-Agent Challange

We evaluate our models on the StarCraft Multi-Agent Challange benchmark (latest version, i.e. 4.10). The challange consists of 14 tasks: '2s_vs_1sc', '2s3z', '3s5z', '1c3s5z', '10m_vs_11m', '2c_vs_64zg', 'bane_vs_bane', '5m_vs_6m', '3s_vs_5z', '3s5z_vs_3s6z', '6h_vs_8z', '27m_vs_30m', 'MMM2' and 'corridor'.

To train on a chosen task, e.g. 'MMM2', add --task_name='MMM2' to configuration, e.g.

./run_local.sh starcraft vtrace 1 "--full_state_critic=False --task_name='MMM2'"

Results

Our model achieves the following performance on SMAC:

results.png

Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition (NeurIPS 2019)

MLCR This is the source code for paper Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition. Xuesong Niu, Hu Han, Shiguang

Edson-Niu 60 Nov 29, 2022
Official implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN Official PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. Prerequisites Python 2.7

SK T-Brain 754 Dec 29, 2022
Pytorch implementation for "Open Compound Domain Adaptation" (CVPR 2020 ORAL)

Open Compound Domain Adaptation [Project] [Paper] [Demo] [Blog] Overview Open Compound Domain Adaptation (OCDA) is the author's re-implementation of t

Zhongqi Miao 137 Dec 15, 2022
Depth image based mouse cursor visual haptic

Depth image based mouse cursor visual haptic How to run it. Install pyqt5. Install python modules pip install Pillow pip install numpy For illustrati

Xiong Jie 17 Dec 20, 2022
An image processing project uses Viola-jones technique to detect faces and then use SIFT algorithm for recognition.

Attendance_System An image processing project uses Viola-jones technique to detect faces and then use LPB algorithm for recognition. Face Detection Us

8 Jan 11, 2022
Neural style in TensorFlow! 🎨

neural-style An implementation of neural style in TensorFlow. This implementation is a lot simpler than a lot of the other ones out there, thanks to T

Anish Athalye 5.5k Dec 29, 2022
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

259 Jan 04, 2023
TFOD-MASKRCNN - Tensorflow MaskRCNN With Python

Tensorflow- MaskRCNN Steps git clone https://github.com/amalaj7/TFOD-MASKRCNN.gi

Amal Ajay 2 Jan 18, 2022
An Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering

PC-SOS-SDP: an Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering PC-SOS-SDP is an exact algorithm based on the branch-and-bound techn

Antonio M. Sudoso 1 Nov 13, 2022
Public repository containing materials used for Feed Forward (FF) Neural Networks article.

Art041_NN_Feed_Forward Public repository containing materials used for Feed Forward (FF) Neural Networks article. -- Illustration of a very simple Fee

SolClover 2 Dec 29, 2021
Official implementation of AAAI-21 paper "Label Confusion Learning to Enhance Text Classification Models"

Description: This is the official implementation of our AAAI-21 accepted paper Label Confusion Learning to Enhance Text Classification Models. The str

101 Nov 25, 2022
DrQ-v2: Improved Data-Augmented Reinforcement Learning

DrQ-v2: Improved Data-Augmented RL Agent Method DrQ-v2 is a model-free off-policy algorithm for image-based continuous control. DrQ-v2 builds on DrQ,

Facebook Research 234 Jan 01, 2023
(JMLR' 19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats & License PyOD is a comprehensive and scalable Python toolkit for detecting outlyin

Yue Zhao 6.6k Jan 05, 2023
Reverse engineering Rosetta 2 in M1 Mac

Project Champollion About this project Rosetta 2 is an emulation mechanism to run the x86_64 applications on Arm-based Apple Silicon with Ahead-Of-Tim

FFRI Security, Inc. 258 Jan 07, 2023
Exploiting a Zoo of Checkpoints for Unseen Tasks

Exploiting a Zoo of Checkpoints for Unseen Tasks This repo includes code to reproduce all results in the above Neurips paper, authored by Jiaji Huang,

Baidu Research 8 Sep 06, 2022
Py4fi2nd - Jupyter Notebooks and code for Python for Finance (2nd ed., O'Reilly) by Yves Hilpisch.

Python for Finance (2nd ed., O'Reilly) This repository provides all Python codes and Jupyter Notebooks of the book Python for Finance -- Mastering Dat

Yves Hilpisch 1k Jan 05, 2023
Detecting Potentially Harmful and Protective Suicide-related Content on Twitter

TwitterSuicideML Scripts for reproducing the Machine Learning analysis of the paper: Detecting Potentially Harmful and Protective Suicide-related Cont

3 Oct 17, 2022
Official implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" (ICCV Workshops 2021: RSL-CV).

Official PyTorch implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" This is the implementation of the paper "Syn

Marcella Astrid 11 Oct 07, 2022
Recurrent Conditional Query Learning

Recurrent Conditional Query Learning (RCQL) This repository contains the Pytorch implementation of One Model Packs Thousands of Items with Recurrent C

Dongda 4 Nov 28, 2022