CARL provides highly configurable contextual extensions to several well-known RL environments.

Related tags

Deep LearningCARL
Overview

The CARL Benchmark Library

CARL (context adaptive RL) provides highly configurable contextual extensions to several well-known RL environments. It's designed to test your agent's generalization capabilities in all scenarios where intra-task generalization is important.

Benchmarks include:

  • OpenAI gym classic control suite extended with several physics context features like gravity or friction

  • OpenAI gym Box2D BipedalWalker, LunarLander and CarRacing, each with their own modification possibilities like new vehicles to race

  • All Brax locomotion environments with exposed internal features like joint strength or torso mass

  • Super Mario (TOAD-GAN), a procedurally generated jump'n'run game with control over level similarity

  • RNADesign, an environment for RNA design given structure constraints with structures from different datasets to choose from

Screenshot of each environment included in CARL.

Installation

We recommend you use a virtual environment (e.g. Anaconda) to install CARL and its dependencies. We recommend and test with python 3.9 under Linux.

First, clone our repository and install the basic requirements:

git clone https://github.com/automl/CARL.git --recursive
cd CARL
pip install .

This will only install the basic classic control environments, which should run on most operating systems. For the full set of environments, use the install options:

pip install -e .[box2d, brax, rna, mario]

These may not be compatible with Windows systems. Box2D environment may need to be installed via conda on MacOS systems:

conda install -c conda-forge gym-box2d

In general, we test on Linux systems, but aim to keep the benchmark compatible with MacOS as much as possible. Mario at this point, however, will not run on any operation system besides Linux

To install the additional requirements for ToadGAN:

javac src/envs/mario/Mario-AI-Framework/**/*.java

If you want to use the RNA design environment:

cd src/envs/rna/learna
make requirements
make data

In case you want to run our experiments or use our training files, also install the experiment dependencies:

pip install -e .[experiments]

Train an Agent

To get started with CARL, you can use our 'train.py' script. It will train a PPO agent on the environment of your choice with custom context variations that are sampled from a standard deviation.

To use MetaCartPole with variations in gravity and friction by 20% compared to the default, run:

python train.py 
--env CARLCartPoleEnv 
--context_args gravity friction
--default_sample_std_percentage 0.2
--outdir <result_location>

You can use the plotting scripts in src/eval to view the results.

CARL's Contextual Extension

CARL contextually extends the environment by making the context visible and configurable. During training we therefore can encounter different contexts and train for generalization. We exemplarily show how Brax' Fetch is extended and embedded by CARL. Different instiations can be achieved by setting the context features to different values.

CARL contextually extends Brax' Fetch.

Cite Us

@misc{CARL,
  author    = {C. Benjamins and 
               T. Eimer and 
               F. Schubert and 
               A. Biedenkapp and 
               B. Rosenhahn and 
               F. Hutter and 
               M. Lindauer},
  title     = {CARL: A Benchmark for Contextual and Adaptive Reinforcement Learning},
  howpublished = {https://github.com/automl/CARL},
  year      = {2021},
  month     = aug,
}

References

OpenAI gym, Brockman et al., 2016. arXiv preprint arXiv:1606.01540

Brax -- A Differentiable Physics Engine for Large Scale Rigid Body Simulation, Freeman et al., NeurIPS 2021 (Dataset & Benchmarking Track)

TOAD-GAN: Coherent Style Level Generation from a Single Example, Awiszus et al., AIIDE 2020

Learning to Design RNA, Runge et al., ICRL 2019

License

CARL falls under the Apache License 2.0 (see file 'LICENSE') as is permitted by all work that we use. This includes CARLMario, which is not based on the Nintendo Game, but on TOAD-GAN and TOAD-GUI running under an MIT license. They in turn make use of the Mario AI framework (https://github.com/amidos2006/Mario-AI-Framework). This is not the original game but a replica, explicitly built for research purposes and includes a copyright notice (https://github.com/amidos2006/Mario-AI-Framework#copyrights ).

Comments
  • Rna fixup

    Rna fixup

    RNA is now better documented and more easily runnable. There's also an option to subsample the datasets instead of always using all instances per context.

    The thing that's missing right now are more context options like filtering by solvers or GC-content, but those aren't easily extractable from our data right now, so that's a separate work package all together.

    opened by TheEimer 6
  • Gym 0.22.0

    Gym 0.22.0

    • update required minimum gym version number
    • added pygame as a requirement because it is not picked up by the gym requirements
    • getting rid of CustomBipedalWalkerEnv because the functionality of changing the gravity is covered by CARLEnv (same for CustomLunarLanderEnv)
    • add high game over penalty for LunarLander by a wrapper
    opened by benjamc 6
  • Instance selection

    Instance selection

    Instance selection now is a class. Default is still roundrobin selection. An instance is only selected when env.reset() (or to be more specific, _progress_instance() is called.

    opened by benjamc 4
  • Added Encoders

    Added Encoders

    Context encoders have been added as a folder and an experiment for running the encoder added in the experiments folders. Since the working directory is the experiment one, I had to add an absolute path for the saved weights. This might need to be changed in the config file

    opened by amsks 4
  • Update References with correct conference

    Update References with correct conference

    Thanks for the pointer to the survey, but it hasn't been published anywhere, so that detail is incorrect (I wouldn't want to claim that it's published somewhere when it isn't).

    opened by RobertKirk 3
  • Performance Deviations in Brax

    Performance Deviations in Brax

    Comparing HalfCheetah in Brax (via gym.make and then wrapped as here: https://github.com/google/brax/blob/main/notebooks/training_torch.ipynb) vs in CARL makes a big difference in return even when the context is kept static. Do we do any unexpected reward normalization? Does the way we reset the env make a difference compared to theirs (as we actually update the simluation)?

    bug 
    opened by TheEimer 2
  • Integrate DM Control

    Integrate DM Control

    • [ ] (convert test file to jupyter notebook. I would like to keep that)
    • [ ] check tests / write more to increase coverage
    • [x] update README.md
    • [x] update documentation
    • [x] add dm_control to requirements
    • [x] support dict observation space
    documentation tests 
    opened by benjamc 2
  • Fix gym version

    Fix gym version

    Gym released a new version where the signature of the step function has changed. This affects our code and requires a separate PR. For now, fix the gym version.

    opened by benjamc 1
  • Initial statedistrs #48

    Initial statedistrs #48

    #48 Make initial state distribution configurable. So far, only uniform distributions are used and the bounds can be adjusted.

    Classic control:

    • [x] Acrobot
    • [x] Pendulum
    • [x] MountainCar (normal distribution instead of uniform)
    • [x] MountainCarContinuous (uniform distribution)
    • [x] CartPole

    Box2d

    • [x] LunarLander

    • [ ] (maybe/later) Make distributions fully configurable by passing the distribution class and its parameters.

    • [x] Update documentation: Contexts are automatically filled with the default context if underspecified.

    opened by benjamc 1
  • Integrate dmcontrol

    Integrate dmcontrol

    Add support for dm control environments. Integrated walker, quadruped and fish.

    In dmc environments there is an additional setting for the context, namely the context mask, which can reduce the amount of context features.

    opened by sebidoe 1
  • use appropriate library for building states

    use appropriate library for building states

    So far, when we do not hide the context, we concatenate the context to the state. For jax based environments (brax) this means that the state is converted from a jax to a numpy array. Now, the state builder checks which library to use and keeps jax states as jax arrays and numpy states as numpy arrays.

    Noticed in #42.

    opened by benjamc 1
  • AttributeError: 'System' object has no attribute 'body_idx' in brax

    AttributeError: 'System' object has no attribute 'body_idx' in brax

    when running test/test_all_envs.py, there is AttributeError: 'System' object has no attribute 'body_idx' in carl_fetch and carl_humanoid environments.

    opened by andy-james0310 3
Releases(v0.2.0)
  • v0.2.0(Jul 12, 2022)

    • Integrate dm control environments (#55)
    • Add context masks to only append those to the state (#54)
    • Extend classic control environments to parametrize initial state distributions (#52)
    • Remove RNA environment for maintenance (#61)
    • Fixed pre-commit (mypy, black, flake8, isort) (#62)
    Source code(tar.gz)
    Source code(zip)
Owner
AutoML-Freiburg-Hannover
AutoML-Freiburg-Hannover
Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides

Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides Project | This repo is the officia

CVSM Group - email: <a href=[email protected]"> 33 Dec 28, 2022
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

NPMs: Neural Parametric Models Project Page | Paper | ArXiv | Video NPMs: Neural Parametric Models for 3D Deformable Shapes Pablo Palafox, Aljaz Bozic

PabloPalafox 109 Nov 22, 2022
Yolo Traffic Light Detection With Python

Yolo-Traffic-Light-Detection This project is based on detecting the Traffic light. Pretained data is used. This application entertained both real time

Ananta Raj Pant 2 Aug 08, 2022
Most popular metrics used to evaluate object detection algorithms.

Most popular metrics used to evaluate object detection algorithms.

Rafael Padilla 4.4k Dec 25, 2022
2021 National Underwater Robotics Vision Optics

2021-National-Underwater-Robotics-Vision-Optics 2021年全国水下机器人算法大赛-光学赛道-B榜精度第18名 (Kilian_Di的团队:A榜[email pro

Di Chang 9 Nov 04, 2022
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

阿才 73 Dec 16, 2022
Implement of "Training deep neural networks via direct loss minimization" in PyTorch for 0-1 loss

This is the implementation of "Training deep neural networks via direct loss minimization" published at ICML 2016 in PyTorch. The implementation targe

Cuong Nguyen 1 Jan 18, 2022
This repository contains the code for the paper 'PARM: Paragraph Aggregation Retrieval Model for Dense Document-to-Document Retrieval' published at ECIR'22.

Paragraph Aggregation Retrieval Model (PARM) for Dense Document-to-Document Retrieval This repository contains the code for the paper PARM: A Paragrap

Sophia Althammer 33 Aug 26, 2022
Definition of a business problem according to Wilson Lower Bound Score and Time Based Average Rating

Wilson Lower Bound Score, Time Based Rating Average In this study I tried to calculate the product rating and sorting reviews more accurately. I have

3 Sep 30, 2021
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
Repository for RNNs using TensorFlow and Keras - LSTM and GRU Implementation from Scratch - Simple Classification and Regression Problem using RNNs

RNN 01- RNN_Classification Simple RNN training for classification task of 3 signal: Sine, Square, Triangle. 02- RNN_Regression Simple RNN training for

Nahid Ebrahimian 13 Dec 13, 2022
Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021) PyTorch implementation of Learning RAW-to-sRGB Mappings with Inaccurat

Zhilu Zhang 53 Dec 20, 2022
Publication describing 3 ML examples at NSLS-II and interfacing into Bluesky

Machine learning enabling high-throughput and remote operations at large-scale user facilities. Overview This repository contains the source code and

BNL 4 Sep 24, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

High performance distributed framework for training deep learning recommendation models based on PyTorch.

340 Dec 30, 2022
Lenia - Mathematical Life Forms

For full version list, see Timeline in Lenia portal [2020-10-13] Update Python version with multi-kernel and multi-channel extensions (v3.4 LeniaNDK.p

Bert Chan 3.1k Dec 28, 2022
A small library for doing fluid simulation with neural networks.

Neural Fluid Fields This is a small library for doing fluid simulation with neural fields. Check out our review paper, Neural Fields in Visual Computi

Towaki 23 Jun 23, 2022
Pytorch Implementation of Various Point Transformers

Pytorch Implementation of Various Point Transformers Recently, various methods applied transformers to point clouds: PCT: Point Cloud Transformer (Men

Neil You 434 Dec 30, 2022
Official implementation for paper Render In-between: Motion Guided Video Synthesis for Action Interpolation

Render In-between: Motion Guided Video Synthesis for Action Interpolation [Paper] [Supp] [arXiv] [4min Video] This is the official Pytorch implementat

8 Oct 27, 2022
Using VideoBERT to tackle video prediction

VideoBERT This repo reproduces the results of VideoBERT (https://arxiv.org/pdf/1904.01766.pdf). Inspiration was taken from https://github.com/MDSKUL/M

75 Dec 14, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022