Medical Image Segmentation using Squeeze-and-Expansion Transformers

Related tags

Deep Learningsegtran
Overview

Medical Image Segmentation using Squeeze-and-Expansion Transformers

Introduction

This repository contains the code of the IJCAI'2021 paper 'Medical Image Segmentation using Squeeze-and-Expansion Transformers'.

Installation

This repository is based on PyTorch 1.7.

To evaluate setr, you need to install mmcv according to https://github.com/fudan-zvg/SETR/.

Usage Example

python3.7 train2d.py --task refuge --split all --net segtran --bb resnet101 --translayers 3 --layercompress 1,1,2,2 --maxiter 10000

python3.7 test2d.py --task refuge --split all --ds valid2 --net segtran --bb resnet101 --translayers 3 --layercompress 1,1,2,2 --cpdir ../model/segtran-refuge-train,valid,test,drishiti,rim-05101448 --iters 7000

Acknowledgement

The "receptivefield" folder is from https://github.com/fornaxai/receptivefield/, with minor edits and bug fixes.

The "MNet_DeepCDR" folder is from https://github.com/HzFu/MNet_DeepCDR, with minor customizations.

The "efficientnet" folder is from https://github.com/lukemelas/EfficientNet-PyTorch, with minor customizations.

The "networks/setr" folder is a slimmed-down version of https://github.com/fudan-zvg/SETR/, with a few custom config files.

There are a few baseline models under networks/ which were originally implemented in various github repos. Here I won't acknowlege them individually.

Some code under "dataloaders/" (esp. 3D image preprocessing) was borrowed from https://github.com/yulequan/UA-MT.

Citation

If you find our code useful, please kindly consider to cite our paper as:

@InProceedings{segtran,
author="Li, Shaohua
and Sui, Xiuchao
and Luo, Xiangde
and Xu, Xinxing
and Liu Yong
and Goh, Rick Siow Mong",
title="Medical Image Segmentation using Squeeze-and-Expansion Transformers",
booktitle="The 30th International Joint Conference on Artificial Intelligence (IJCAI)",
year="2021",
}
Owner
askerlee
Machine learning researcher in Singapore.
askerlee
IGCN : Image-to-graph convolutional network

IGCN : Image-to-graph convolutional network IGCN is a learning framework for 2D/3D deformable model registration and alignment, and shape reconstructi

Megumi Nakao 7 Oct 27, 2022
Code for our NeurIPS 2021 paper: Sparsely Changing Latent States for Prediction and Planning in Partially Observable Domains

GateL0RD This is a lightweight PyTorch implementation of GateL0RD, our RNN presented in "Sparsely Changing Latent States for Prediction and Planning i

Autonomous Learning Group 16 Nov 03, 2022
Source code of the paper Meta-learning with an Adaptive Task Scheduler.

ATS About Source code of the paper Meta-learning with an Adaptive Task Scheduler. If you find this repository useful in your research, please cite the

Huaxiu Yao 16 Dec 26, 2022
ChainerRL is a deep reinforcement learning library built on top of Chainer.

ChainerRL and PFRL ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement al

Chainer 1.1k Jan 01, 2023
Build fully-functioning computer vision models with PyTorch

Detecto is a Python package that allows you to build fully-functioning computer vision and object detection models with just 5 lines of code. Inferenc

Alan Bi 576 Dec 29, 2022
Implementation of Change-Based Exploration Transfer (C-BET)

Implementation of Change-Based Exploration Transfer (C-BET), as presented in Interesting Object, Curious Agent: Learning Task-Agnostic Exploration.

Simone Parisi 29 Dec 04, 2022
A Simplied Framework of GAN Inversion

Framework of GAN Inversion Introcuction You can implement your own inversion idea using our repo. We offer a full range of tuning settings (in hparams

Kangneng Zhou 13 Sep 27, 2022
PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection.

Introduction This repo contains the official PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection. Up

133 Dec 29, 2022
Problem-943.-ACMP - Problem 943. ACMP

Problem-943.-ACMP В "main.py" расположен вариант моего решения задачи 943 с серв

Konstantin Dyomshin 2 Aug 19, 2022
Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper

Divide and Remaster Utility Tools Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper The DnR d

Darius Petermann 46 Dec 11, 2022
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API

FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.

Machine Learning and Optimization Lab @PennState 136 Dec 23, 2022
INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing

INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing Existing studies on semantic parsing focus primarily on mapping a natural-la

7 Aug 22, 2022
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings

When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings This is the repository for t

RegLab 39 Jan 07, 2023
Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet)

Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet) By Lele Chen , Ross K Maddox, Zhiyao Duan, Chenliang Xu. Unive

Lele Chen 218 Dec 27, 2022
The code written during my Bachelor Thesis "Classification of Human Whole-Body Motion using Hidden Markov Models".

This code was written during the course of my Bachelor thesis Classification of Human Whole-Body Motion using Hidden Markov Models. Some things might

Matthias Plappert 14 Dec 06, 2022
This repository contains all code and data for the Inside Out Visual Place Recognition task

Inside Out Visual Place Recognition This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognitio

15 May 21, 2022
Keras Image Embeddings using Contrastive Loss

Keras-Image-Embeddings-using-Contrastive-Loss Image to Embedding projection in vector space. Implementation in keras and tensorflow for custom data. B

Shravan Anand K 5 Mar 21, 2022
Open source code for the paper of Neural Sparse Voxel Fields.

Neural Sparse Voxel Fields (NSVF) Project Page | Video | Paper | Data Photo-realistic free-viewpoint rendering of real-world scenes using classical co

Meta Research 647 Dec 27, 2022
Official repository of "BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment"

BasicVSR_PlusPlus (CVPR 2022) [Paper] [Project Page] [Code] This is the official repository for BasicVSR++. Please feel free to raise issue related to

Kelvin C.K. Chan 227 Jan 01, 2023