The official code for paper "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Modeling".

Overview

R2D2

This is the official code for paper titled "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Modeling". The current repo is refactored from the original version used in the paper. If meet any issue, please feel free to feedback.

Data

Train

Multi-GPUs

For training from scratch in a single machine with multiple GPUs, please follow scripts below:

CORPUS_PATH=
OUTPUT_PATH=
NODE_NUM=

python -m torch.distributed.launch \
    --nproc_per_node $NODE_NUM R2D2_trainer.py --batch_size 16 \
    --min_len 2 \
    --max_batch_len 512 \
    --max_line -1 \
    --corpus_path $CORPUS_PATH \
    --vocab_path data/en_bert/bert-base-uncased-vocab.txt \
    --config_path data/en_bert/config.json \
    --epoch 60 \
    --output_dir $OUTPUT_PATH \
    --window_size 4 \
    --input_type txt

Single-GPU

CORPUS_PATH=
OUTPUT_PATH=

python trainer.R2D2_trainer \
    --batch_size 16 \
    --min_len 2 \
    --max_batch_len 512 \
    --max_line -1 \
    --corpus_path $CORPUS_PATH \
    --vocab_path data/en_bert/bert-base-uncased-vocab.txt \
    --config_path data/en_bert/config.json \
    --epoch 10 \
    --output_dir $OUTPUT_PATH \
    --input_type txt

Evaluation

Evaluating the bidirectional language model task.

CORPUS_PATH=path to training corpus
VOCAB_DIR=directory of vocab.txt
MODEL_PATH=path to model.bin
CONFIG_PATH=path to config.json

python lm_eval_buckets.py \
    --model_name R2D2 \
    --dataset test \
    --config_path CONFIG_PATH \
    --model_path MODEL_PATH \
    --vocab_dir VOCAB_DIR \
    --corpus_path CORPUS_PATH

For evaluating F1 score on constituency trees, please refer to https://github.com/harvardnlp/compound-pcfg/blob/master/compare_trees.py

Evaluating compatibility with dependency trees: Download WSJ dataset and convert to dependency trees by Stanford CoreNLP(https://stanfordnlp.github.io/CoreNLP/). As WSJ is not a free dataset, it's not included in our project. Please refer to the files in data/predict_trees for detail format of tree induced.

python eval_tree.py \
    --pred_tree_path path_to_tree_induced \
    --ground_truth_path path_to_dependency_trees
    --vocab_dir VOCAB_DIR

On-going work

  1. Re-implement whole model to increase GPU utility ratio.
  2. Pre-train on large corpus

Contact

[email protected] and [email protected]

You might also like...
Official code repository of the paper Learning Associative Inference Using Fast Weight Memory by Schlag et al.

Learning Associative Inference Using Fast Weight Memory This repository contains the offical code for the paper Learning Associative Inference Using F

Official PyTorch code for CVPR 2020 paper
Official PyTorch code for CVPR 2020 paper "Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision"

Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision https://arxiv.org/abs/2003.00393 Abstract Active learning (AL) aims to min

Official Code for ICML 2021 paper
Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng Internati

CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

selfcontact This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] It includes the main function

CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

SMPLify-XMC This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright Lic

Official code of paper "PGT: A Progressive Method for Training Models on Long Videos" on CVPR2021

PGT Code for paper PGT: A Progressive Method for Training Models on Long Videos. Install Run pip install -r requirements.txt. Run python setup.py buil

This is the official code of our paper
This is the official code of our paper "Diversity-based Trajectory and Goal Selection with Hindsight Experience Relay" (PRICAI 2021)

Diversity-based Trajectory and Goal Selection with Hindsight Experience Replay This is the official implementation of our paper "Diversity-based Traje

Official repository with code and data accompanying the NAACL 2021 paper "Hurdles to Progress in Long-form Question Answering" (https://arxiv.org/abs/2103.06332).

Hurdles to Progress in Long-form Question Answering This repository contains the official scripts and datasets accompanying our NAACL 2021 paper, "Hur

Official code for paper
Official code for paper "Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight"

Demysitifing Local Vision Transformer, arxiv This is the official PyTorch implementation of our paper. We simply replace local self attention by (dyna

Comments
  • question about perplexity measures with R2D2 original model

    question about perplexity measures with R2D2 original model

    I have a few minor questions about the R2D2 PPPL measurements and their implementation.

    Q1: In the paper, it says PPPL is defined as, exp(-(1/N) sum(L(S)))

    This makes sense. But in the evaluation code here,

                    log_p_sums, b_c, pppl = self.predictor(ids, self.bucket_size, self.get_bucket_id)
                    PPPL += (pppl - PPPL) / counter
                    print(PPPL, file=f_out)
    

    We are outputting PPPL without taking the exponential. I assume the numbers in the paper are actually 2^{PPPL} here right? assuming we are using 2 as the base. I simply load a random BERT model, PPPL outputted here is around 10.4, 2^{10.4} ~= 1351, which is about right.

    Q2: For pretraining the BERT model baseline, are you guys loading the same dataset as in the link below? or loading some default huggingface dataset? https://github.com/alipay/StructuredLM_RTDT/tree/r2d2/data/en_wiki

    Sorry to throw random questions at you, but this would be very helpful for me to build something on top of this.

    Thanks.

    opened by frankaging 4
  • an potential issue found for the nn.MultiheadAttention module setup

    an potential issue found for the nn.MultiheadAttention module setup

    Hi Authors!

    Thanks for sharing this repo, I enjoyed when reading your paper, and I am working on a related project. As I am going through the code, I found one potential issue with the current setup. I will (1) explain the issue, and (2) provide a simple test case that I ran on my end. Please help with verifying.

    Issue:

    • nn.MultiheadAttention module inside the BinaryEncoder module is set with batch_first=True, however it seems like we are passing in Q, K, V matrics without the first dimension being the batch dimension.

    Code Analysis: In r2d2.py, it is calling the encoder here, as the following

            tasks_embedding = self.embedding(task_ids)  # (?, 2, dim)
            input_embedding = torch.cat([tasks_embedding, tensor_batch], dim=1)  # (?, 4, dim)
            outputs = self.tree_encoder(input_embedding.transpose(0, 1)).transpose(0, 1)  # (? * batch_size, 4, dim)
    

    We can see that input_embedding is definitely with the first dimension being the batch_size as it concat with the embeddings from the nn.embedding module. Before we call self.tree_encoder, .transpose(0, 1) makes the the second dimension of the input being the batch_size instead. Specifically, the first dimension, in this case, is always 4.

    Testing Done: I simply add some logs inside TreeEncoderLayer as,

        def forward(self, src, src_mask=None, pos_ids=None):
            """
            :param src: concatenation of task embeddings and representation for left and right.
                        src shape: (task_embeddings + left + right, batch_size, dim)
            :param src_mask:
            :param pos_ids:
            :return:
            """
            if len(pos_ids.shape) == 1:
                sz = src.shape[0]  # sz: batch_size
                pos_ids = pos_ids.unsqueeze(0).expand(sz, -1)  # (3, batch_size)
            position_embedding = self.position_embedding(pos_ids)
            print("pre: ", src.shape)
            print("pos_emb: ", position_embedding.shape)
            output = self.self_attn(src + position_embedding, src + position_embedding, src, attn_mask=src_mask)
            src2 = output[0]
            attn_weights = output[1]
            print("attn_w: ", attn_weights.shape)
            src = src + self.dropout1(src2)
            src = self.norm1(src)
            src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
            src = src + self.dropout2(src2)
            src = self.norm2(src)
            print("post: ", src.shape)
            return src
    

    And this is what I get,

    pre:  torch.Size([4, 8, 768])
    pos_emb:  torch.Size([4, 8, 768])
    attn_w:  torch.Size([4, 8, 8])
    post:  torch.Size([4, 8, 768])
    

    Summary: It seems like for r2d2.py, the self-attention is not on those 4 tokens (2 special prefix + left and right children embedding), but it is on the full collection of candidates with their children.

    I saw this issue is not presented in r2d2_cuda.py as,

                outputs = self.tree_encoder(
                    input_embedding)  # (? * batch_size, 4, dim)
    

    This is great. I have not checked the rest of the code for r2d2_cuda.py though. With this, I am wondering are the numbers from either of your papers need to be updated with this potential issue? Either way, I am not blocked by this potential issue, and I was inspired quite a lot by your codebase. Thanks!

    opened by frankaging 3
  • 关于backbone的疑问。

    关于backbone的疑问。

    作者你好,非常感谢你的贡献,我觉得你的工作很有意义,感觉是一个新方向。 有2个疑问需要请教一下:

    1. encoder 使用 transformer,基于注意力的模型,其能力很大部门来源于能通过注意力机制编码出上下文中有用的信息,但这里每次输入只有 [SUM], [CLS], [token1], [token2] 共4个,上下文短,个人感觉 transformer 可能不是最合适的,有试过其它编码器吗?比如gru,或者textCNN?
    2. 有办法并行编码吗?虽然 transformer 的时间复杂度高,但是GPU并行编码很好解决了训练时间长的问题。从论文的E图看 CKY 树编码,一个 token 要分别编码几次,这样会不会导致训练时间实际更长?如,3层 R2D2 比 12 层 transformer 训练数据时间更长? 谢谢作者。
    opened by wulaoshi 1
Releases(fast-R2D2)
Owner
Alipay
Ant Group Open Source
Alipay
Shōgun

The SHOGUN machine learning toolbox Unified and efficient Machine Learning since 1999. Latest release: Cite Shogun: Develop branch build status: Donat

Shōgun ML 2.9k Jan 04, 2023
StrongSORT: Make DeepSORT Great Again

StrongSORT StrongSORT: Make DeepSORT Great Again StrongSORT: Make DeepSORT Great Again Yunhao Du, Yang Song, Bo Yang, Yanyun Zhao arxiv 2202.13514 Abs

369 Jan 04, 2023
Extremely simple and fast extreme multi-class and multi-label classifiers.

napkinXC napkinXC is an extremely simple and fast library for extreme multi-class and multi-label classification, that focus of implementing various m

Marek Wydmuch 43 Nov 14, 2022
Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model

Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model Baris Gecer 1, Binod Bhattarai 1

Baris Gecer 190 Dec 29, 2022
Smart edu-autobooking - Johnson @ DMI-UNICT study room self-booking system

smart_edu-autobooking Sistema di autoprenotazione per l'aula studio [email protected]

Davide Carnemolla 17 Jun 20, 2022
TinyML Cookbook, published by Packt

TinyML Cookbook This is the code repository for TinyML Cookbook, published by Packt. Author: Gian Marco Iodice Publisher: Packt About the book This bo

Packt 93 Dec 29, 2022
Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task

multi-task_losses_optimizer Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task 已经实验过了,不会有cuda out of memory情况 ##Par

14 Dec 25, 2022
😮The official implementation of "CoNeRF: Controllable Neural Radiance Fields" 😮

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
Offical code for the paper: "Growing 3D Artefacts and Functional Machines with Neural Cellular Automata" https://arxiv.org/abs/2103.08737

Growing 3D Artefacts and Functional Machines with Neural Cellular Automata Video of more results: https://www.youtube.com/watch?v=-EzztzKoPeo Requirem

Robotics Evolution and Art Lab 51 Jan 01, 2023
Autonomous racing with the Anki Overdrive

Anki Autonomous Racing Autonomous racing with the Anki Overdrive. Using the Overdrive-Python API (https://github.com/xerodotc/overdrive-python) develo

3 Dec 11, 2022
Fake videos detection by tracing the source using video hashing retrieval.

Vision Transformer Based Video Hashing Retrieval for Tracing the Source of Fake Videos 🎉️ 📜 Directory Introduction VTL Trace Samples and Acc of Hash

56 Dec 22, 2022
ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Mi

Dequan Wang 204 Dec 25, 2022
Examples of how to create colorful, annotated equations in Latex using Tikz.

The file "eqn_annotate.tex" is the main latex file. This repository provides four examples of annotated equations: [example_prob.tex] A simple one ins

SyNeRCyS Research Lab 3.2k Jan 05, 2023
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
Match SafeGraph POIs with Data collected through a cultural resource survey in Washington DC.

Match SafeGraph POI data with Cultural Resource Places in Washington DC Match SafeGraph POIs with Data collected through a cultural resource survey in

Changjie Chen 1 Jan 05, 2022
KGDet: Keypoint-Guided Fashion Detection (AAAI 2021)

KGDet: Keypoint-Guided Fashion Detection (AAAI 2021) This is an official implementation of the AAAI-2021 paper "KGDet: Keypoint-Guided Fashion Detecti

Qian Shenhan 35 Dec 29, 2022
EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks

EncT5 (Unofficial) Pytorch Implementation of EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks About Finetune T5 model for classification & r

Jangwon Park 34 Jan 01, 2023
Fast Style Transfer in TensorFlow

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! You can even style videos! It takes 100ms o

Jefferson 5 Oct 24, 2021
PyTorch deep learning projects made easy.

PyTorch Template Project PyTorch deep learning project made easy. PyTorch Template Project Requirements Features Folder Structure Usage Config file fo

Victor Huang 3.8k Jan 01, 2023
This is an unofficial PyTorch implementation of Meta Pseudo Labels

This is an unofficial PyTorch implementation of Meta Pseudo Labels. The official Tensorflow implementation is here.

Jungdae Kim 320 Jan 08, 2023