Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)

Overview

Hierarchical Metadata-Aware Document Categorization under Weak Supervision

This project provides a weakly supervised framework for hierarchical metadata-aware document categorization.

Links

Installation

For training, a GPU is strongly recommended.

Keras

The code is based on Keras. You can find installation instructions here.

Dependency

The code is written in Python 3.6. The dependencies are summarized in the file requirements.txt. You can install them like this:

pip3 install -r requirements.txt

Quick Start

To reproduce the results in our paper, you need to first download the datasets. Three datasets are used in our paper: GitHub, ArXiv, and Amazon. Once you unzip the downloaded file (i.e., data.zip), you can see three folders related to these three datasets, respectively.

Dataset #Documents #Layers #Classes (including ROOT) #Leaves Sample Classes
GitHub 1,596 2 18 14 Computer Vision (Layer-1), Image Generation (Layer-2)
ArXiv 26,400 2 94 88 cs (Layer-1), cs.AI (Layer-2)
Amazon 147,000 2 166 147 Automotive (Layer-1), Car Care (Layer-2)

You need to put these 3 folders under the main folder ./. Then the following running script can be used to run the model.

./test.sh

Level-1/Level-2/Overall Micro-F1/Macro-F1 scores will be shown in the last several lines of the output. The classification result can be found under your dataset folder. For example, if you are using the GitHub dataset, the output will be ./github/out.txt.

Data

In each of the three folders (i.e., github/, arxiv/, and amazon/), there is a json file, where each line represents one document with text and metadata information.

For GitHub, the json format is

{
  "id": "Natsu6767/DCGAN-PyTorch",  
  "user": [
    "Natsu6767"
  ],
  "text": "pytorch implementation of dcgan trained on the celeba dataset deep convolutional gan ...",
  "tags": [
    "pytorch",
    "dcgan",
    "gan",
    "implementation",
    "deeplearning",
    "computer-vision",
    "generative-model"
  ],
  "labels": [
    "$Computer-Vision",
    "$Image-Generation"
  ]
}

The "user" and "tags" fields are metadata.

For ArXiv, the json format is

{
  "id": "1001.0063",
  "authors": [
    "Alessandro Epasto",
    "Enrico Nardelli"
  ],
  "text": "on a model for integrated information in this paper we give a thorough presentation ...",
  "labels": [
    "cs",
    "cs.AI"
  ]
}

The "authors" field is metadata.

For Amazon, the json format is

{
  "user": [
    "A39IXH6I0WT6TK"
  ],
  "product": [
    "B004DLPXAO"
  ],
  "text": "works really great only had a problem when it was updated but they fixed it right away ...",
  "labels": [
    "Apps-for-Android",
    "Books-&-Comics"
  ]
}

The "user" and "product" fields are metadata.

NOTE 1: If you would like to run our code on your own dataset, when you prepare this json file, make sure that: (1) You list the labels in the top-down order. For example, if the label path of your repository is ROOT-A-B-C, then the "labels" field should be ["A", "B", "C"]. (2) For each document, its metadata field is always represented by a list. For example, the "user" field should be ["A39IXH6I0WT6TK"] instead of "A39IXH6I0WT6TK".

Running on New Datasets

In the Quick Start section, we include a pretrained embedding file in the downloaded folders. If you would like to re-train the embedding (or you have a new dataset), please follow the steps below.

  1. Create a directory named ${dataset} under the main folder (e.g., ./github).

  2. Prepare four files:
    (1) ./${dataset}/label_hier.txt indicating the parent children relationships between classes. The first class of each line is the parent class, followed by all its children classes. Whitespace is used as the delimiter. The root class must be named as ROOT. Make sure your class names do not contain whitespace.
    (2) ./${dataset}/doc_id.txt containing labeled document ids for each class. Each line begins with the class name, and then document ids in the corpus (starting from 0) of the corresponding class separated by whitespace.
    (3) ./${dataset}/${json-name}.json. You can refer to the provided json format above. Make sure it has two fields "text" and "labels". You can add your own metadata fields in the json.
    (4) ./${dataset}/meta_dict.json indicating the names of your metadata fields. For example, for GitHub, it should be

{"metadata": ["user", "tags"]}

For ArXiv, it should be

{"metadata": ["authors"]}
  1. Install the dependencies GSL and Eigen. For Eigen, we already provide a zip file JointEmbedding/eigen-3.3.3.zip. You can directly unzip it in JointEmbedding/. For GSL, you can download it here.

  2. ./prep_emb.sh. Make sure you change the dataset/json names. The embedding file will be saved to ./${dataset}/embedding_sph.

After that, you can train the classifier as mentioned in Quick Start (i.e., ./test.sh). Please always refer to the example datasets when adapting the code for a new dataset.

Citation

If you find the implementation useful, please cite the following paper:

@inproceedings{zhang2021hierarchical,
  title={Hierarchical Metadata-Aware Document Categorization under Weak Supervision},
  author={Zhang, Yu and Chen, Xiusi and Meng, Yu and Han, Jiawei},
  booktitle={WSDM'21},
  pages={770--778},
  year={2021},
  organization={ACM}
}
Owner
Yu Zhang
CS Ph.D. student at UIUC; Data Mining
Yu Zhang
Official code of ICCV2021 paper "Residual Attention: A Simple but Effective Method for Multi-Label Recognition"

CSRA This is the official code of ICCV 2021 paper: Residual Attention: A Simple But Effective Method for Multi-Label Recoginition Demo, Train and Vali

163 Dec 22, 2022
This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

1 Oct 25, 2021
交互式标注软件,暂定名 iann

iann 交互式标注软件,暂定名iann。 安装 按照官网介绍安装paddle。 安装其他依赖 pip install -r requirements.txt 运行 git clone https://github.com/PaddleCV-SIG/iann/ cd iann python iann

294 Dec 30, 2022
A curated list of awesome Deep Learning tutorials, projects and communities.

Awesome Deep Learning Table of Contents Books Courses Videos and Lectures Papers Tutorials Researchers Websites Datasets Conferences Frameworks Tools

Christos 20k Jan 05, 2023
[CVPR 2022] Unsupervised Image-to-Image Translation with Generative Prior

GP-UNIT - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Unsupervised Image-to-

Shuai Yang 125 Jan 03, 2023
NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions Overview NUANCED is a user-centric conversational recommen

Facebook Research 18 Dec 28, 2021
Scripts and a shader to get you started on setting up an exported Koikatsu character in Blender.

KK Blender Shader Pack A plugin and a shader to get you started with setting up an exported Koikatsu character in Blender. The plugin is a Blender add

166 Jan 01, 2023
LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant Self-At

OxCSML (Oxford Computational Statistics and Machine Learning) 50 Dec 28, 2022
Implementation and replication of ProGen, Language Modeling for Protein Generation, in Jax

ProGen - (wip) Implementation and replication of ProGen, Language Modeling for Protein Generation, in Pytorch and Jax (the weights will be made easily

Phil Wang 71 Dec 01, 2022
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition

Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition Official implementation of the Efficient Conforme

Maxime Burchi 145 Dec 30, 2022
The repository offers the official implementation of our BMVC 2021 paper in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
MonoScene: Monocular 3D Semantic Scene Completion

MonoScene: Monocular 3D Semantic Scene Completion MonoScene: Monocular 3D Semantic Scene Completion] [arXiv + supp] | [Project page] Anh-Quan Cao, Rao

298 Jan 08, 2023
Weakly Supervised Text-to-SQL Parsing through Question Decomposition

Weakly Supervised Text-to-SQL Parsing through Question Decomposition The official repository for the paper "Weakly Supervised Text-to-SQL Parsing thro

14 Dec 19, 2022
Resources related to EMNLP 2021 paper "FAME: Feature-Based Adversarial Meta-Embeddings for Robust Input Representations"

FAME: Feature-based Adversarial Meta-Embeddings This is the companion code for the experiments reported in the paper "FAME: Feature-Based Adversarial

Bosch Research 11 Nov 27, 2022
Fortuitous Forgetting in Connectionist Networks

Fortuitous Forgetting in Connectionist Networks Introduction This repository includes reference code for the paper Fortuitous Forgetting in Connection

Hattie Zhou 14 Nov 26, 2022
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
Cl datasets - PyTorch image dataloaders and utility functions to load datasets for supervised continual learning

Continual learning datasets Introduction This repository contains PyTorch image

berjaoui 5 Aug 28, 2022
Keyword-BERT: Keyword-Attentive Deep Semantic Matching

project discription An implementation of the Keyword-BERT model mentioned in my paper Keyword-Attentive Deep Semantic Matching (Plz cite this github r

1 Nov 14, 2021
GNNAdvisor: An Efficient Runtime System for GNN Acceleration on GPUs

GNNAdvisor: An Efficient Runtime System for GNN Acceleration on GPUs [Paper, Slides, Video Talk] at USENIX OSDI'21 @inproceedings{GNNAdvisor, title=

YUKE WANG 47 Jan 03, 2023