Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)

Overview

Hierarchical Metadata-Aware Document Categorization under Weak Supervision

This project provides a weakly supervised framework for hierarchical metadata-aware document categorization.

Links

Installation

For training, a GPU is strongly recommended.

Keras

The code is based on Keras. You can find installation instructions here.

Dependency

The code is written in Python 3.6. The dependencies are summarized in the file requirements.txt. You can install them like this:

pip3 install -r requirements.txt

Quick Start

To reproduce the results in our paper, you need to first download the datasets. Three datasets are used in our paper: GitHub, ArXiv, and Amazon. Once you unzip the downloaded file (i.e., data.zip), you can see three folders related to these three datasets, respectively.

Dataset #Documents #Layers #Classes (including ROOT) #Leaves Sample Classes
GitHub 1,596 2 18 14 Computer Vision (Layer-1), Image Generation (Layer-2)
ArXiv 26,400 2 94 88 cs (Layer-1), cs.AI (Layer-2)
Amazon 147,000 2 166 147 Automotive (Layer-1), Car Care (Layer-2)

You need to put these 3 folders under the main folder ./. Then the following running script can be used to run the model.

./test.sh

Level-1/Level-2/Overall Micro-F1/Macro-F1 scores will be shown in the last several lines of the output. The classification result can be found under your dataset folder. For example, if you are using the GitHub dataset, the output will be ./github/out.txt.

Data

In each of the three folders (i.e., github/, arxiv/, and amazon/), there is a json file, where each line represents one document with text and metadata information.

For GitHub, the json format is

{
  "id": "Natsu6767/DCGAN-PyTorch",  
  "user": [
    "Natsu6767"
  ],
  "text": "pytorch implementation of dcgan trained on the celeba dataset deep convolutional gan ...",
  "tags": [
    "pytorch",
    "dcgan",
    "gan",
    "implementation",
    "deeplearning",
    "computer-vision",
    "generative-model"
  ],
  "labels": [
    "$Computer-Vision",
    "$Image-Generation"
  ]
}

The "user" and "tags" fields are metadata.

For ArXiv, the json format is

{
  "id": "1001.0063",
  "authors": [
    "Alessandro Epasto",
    "Enrico Nardelli"
  ],
  "text": "on a model for integrated information in this paper we give a thorough presentation ...",
  "labels": [
    "cs",
    "cs.AI"
  ]
}

The "authors" field is metadata.

For Amazon, the json format is

{
  "user": [
    "A39IXH6I0WT6TK"
  ],
  "product": [
    "B004DLPXAO"
  ],
  "text": "works really great only had a problem when it was updated but they fixed it right away ...",
  "labels": [
    "Apps-for-Android",
    "Books-&-Comics"
  ]
}

The "user" and "product" fields are metadata.

NOTE 1: If you would like to run our code on your own dataset, when you prepare this json file, make sure that: (1) You list the labels in the top-down order. For example, if the label path of your repository is ROOT-A-B-C, then the "labels" field should be ["A", "B", "C"]. (2) For each document, its metadata field is always represented by a list. For example, the "user" field should be ["A39IXH6I0WT6TK"] instead of "A39IXH6I0WT6TK".

Running on New Datasets

In the Quick Start section, we include a pretrained embedding file in the downloaded folders. If you would like to re-train the embedding (or you have a new dataset), please follow the steps below.

  1. Create a directory named ${dataset} under the main folder (e.g., ./github).

  2. Prepare four files:
    (1) ./${dataset}/label_hier.txt indicating the parent children relationships between classes. The first class of each line is the parent class, followed by all its children classes. Whitespace is used as the delimiter. The root class must be named as ROOT. Make sure your class names do not contain whitespace.
    (2) ./${dataset}/doc_id.txt containing labeled document ids for each class. Each line begins with the class name, and then document ids in the corpus (starting from 0) of the corresponding class separated by whitespace.
    (3) ./${dataset}/${json-name}.json. You can refer to the provided json format above. Make sure it has two fields "text" and "labels". You can add your own metadata fields in the json.
    (4) ./${dataset}/meta_dict.json indicating the names of your metadata fields. For example, for GitHub, it should be

{"metadata": ["user", "tags"]}

For ArXiv, it should be

{"metadata": ["authors"]}
  1. Install the dependencies GSL and Eigen. For Eigen, we already provide a zip file JointEmbedding/eigen-3.3.3.zip. You can directly unzip it in JointEmbedding/. For GSL, you can download it here.

  2. ./prep_emb.sh. Make sure you change the dataset/json names. The embedding file will be saved to ./${dataset}/embedding_sph.

After that, you can train the classifier as mentioned in Quick Start (i.e., ./test.sh). Please always refer to the example datasets when adapting the code for a new dataset.

Citation

If you find the implementation useful, please cite the following paper:

@inproceedings{zhang2021hierarchical,
  title={Hierarchical Metadata-Aware Document Categorization under Weak Supervision},
  author={Zhang, Yu and Chen, Xiusi and Meng, Yu and Han, Jiawei},
  booktitle={WSDM'21},
  pages={770--778},
  year={2021},
  organization={ACM}
}
Owner
Yu Zhang
CS Ph.D. student at UIUC; Data Mining
Yu Zhang
Tensorflow Implementation of ECCV'18 paper: Multimodal Human Motion Synthesis

MT-VAE for Multimodal Human Motion Synthesis This is the code for ECCV 2018 paper MT-VAE: Learning Motion Transformations to Generate Multimodal Human

Xinchen Yan 36 Oct 02, 2022
We are More than Our JOints: Predicting How 3D Bodies Move

We are More than Our JOints: Predicting How 3D Bodies Move Citation This repo contains the official implementation of our paper MOJO: @inproceedings{Z

72 Oct 20, 2022
A set of tools for converting a darknet dataset to COCO format working with YOLOX

darknet格式数据→COCO darknet训练数据目录结构(详情参见dataset/darknet): darknet ├── class.names ├── gen_config.data ├── gen_train.txt ├── gen_valid.txt └── images

RapidAI-NG 148 Jan 03, 2023
Molecular AutoEncoder in PyTorch

MolEncoder Molecular AutoEncoder in PyTorch Install $ git clone https://github.com/cxhernandez/molencoder.git && cd molencoder $ python setup.py insta

Carlos Hernández 80 Dec 05, 2022
Codes for paper "Towards Diverse Paragraph Captioning for Untrimmed Videos". CVPR 2021

Towards Diverse Paragraph Captioning for Untrimmed Videos This repository contains PyTorch implementation of our paper Towards Diverse Paragraph Capti

Yuqing Song 61 Oct 11, 2022
Liecasadi - liecasadi implements Lie groups operation written in CasADi

liecasadi liecasadi implements Lie groups operation written in CasADi, mainly di

Artificial and Mechanical Intelligence 14 Nov 05, 2022
The `rtdl` library + The official implementation of the paper

The `rtdl` library + The official implementation of the paper "Revisiting Deep Learning Models for Tabular Data"

Yandex Research 510 Dec 30, 2022
A large-image collection explorer and fast classification tool

IMAX: Interactive Multi-image Analysis eXplorer This is an interactive tool for visualize and classify multiple images at a time. It written in Python

Matias Carrasco Kind 23 Dec 16, 2022
CTF challenges and write-ups for MicroCTF 2021.

MicroCTF 2021 Qualifications About This repository contains CTF challenges and official write-ups for MicroCTF 2021 Qualifications. License Distribute

Shellmates 12 Dec 27, 2022
Files for a tutorial to train SegNet for road scenes using the CamVid dataset

SegNet and Bayesian SegNet Tutorial This repository contains all the files for you to complete the 'Getting Started with SegNet' and the 'Bayesian Seg

Alex Kendall 800 Dec 31, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
NeuroFind - A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

NeuroFind A solution to the to the Task given by the Oberseminar of Messtechnik

1 Jan 20, 2022
(to be released) [NeurIPS'21] Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs

Higher-Order Transformers Kim J, Oh S, Hong S, Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs, NeurIPS 2021. [arxiv] W

Jinwoo Kim 44 Dec 28, 2022
This is a project based on ConvNets used to identify whether a road is clean or dirty. We have used MobileNet as our base architecture and the weights are based on imagenet.

PROJECT TITLE: CLEAN/DIRTY ROAD DETECTION USING TRANSFER LEARNING Description: This is a project based on ConvNets used to identify whether a road is

Faizal Karim 3 Nov 06, 2022
Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

155 Oct 27, 2022
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa

19 Oct 14, 2022
CSE-519---Project - Job Title Analysis (Project for CSE 519 - Data Science Fundamentals)

A Multifaceted Approach to Job Title Analysis CSE 519 - Data Science Fundamentals Project Description Project consists of three parts: Salary Predicti

Jimit Dholakia 1 Jan 04, 2022
An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astronomy data.

EquivariantSelfAttention An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astro

2 Nov 09, 2021
[ICLR 2022] Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics

CPDeform Code and data for paper Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics at ICLR 2022 (Spotlight). @InProceed

(Lester) Sizhe Li 29 Nov 29, 2022
Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Vansh Wassan 15 Jun 17, 2021