Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation

Overview

UniFuse (RAL+ICRA2021)

Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation, arXiv, Demo

Preparation

Installation

Environments

  • python 3.6
  • Pytorch >= 1.0.0
  • CUDA >= 9.0

Install requirements

pip install -r requirements.txt

Datasets

Please download the preferred datasets, i.e., Matterport3D, Stanford2D3D, 3D60 and PanoSUNCG. For Matterport3D, please preprocess it following M3D-README.md.

Training

UniFuse on Matterport3D

python train.py --data_path $DATA_PATH \
-dataset matterport3d \
--model_name Matterport3D_UniFuse \
--batch_size 6 \
--num_epochs 100 \
--height 512 \
--width 1024 \
--imagenet_pretrained \
--net UniFuse 

Equirectangular baseline on Matterport3D

python train.py --data_path $DATA_PATH \
-dataset matterport3d \
--model_name Matterport3D_Equi \
--batch_size 6 \
--num_epochs 100 \
--height 512 \
--width 1024 \
--imagenet_pretrained \
--net Equi 

It is similar for other datasets.

Evaluation

Pre-trained models

The pre-trained models of UniFuse for 4 datasets are available, Matterport3D, Stanford2D3D, 3D60 and PanoSUNCG.

Test on a pre-trained model

python evaluate.py  --data_path $DATA_PATH --dataset matterport3d --load_weights_folder $MODEL_PATH 

Citation

Please cite our paper if you find our work useful in your research.

@article{jiang2021unifuse,
      title={UniFuse: Unidirectional Fusion for 360$^{\circ}$ Panorama Depth Estimation}, 
      author={Hualie Jiang and Zhe Sheng and Siyu Zhu and Zilong Dong and Rui Huang},
	  journal={IEEE Robotics and Automation Letters},
	  year={2021},
	  publisher={IEEE}
}
Owner
Alibaba
Alibaba Open Source
Alibaba
A fast Protein Chain / Ligand Extractor and organizer.

Are you tired of using visualization software, or full blown suites just to separate protein chains / ligands ? Are you tired of organizing the mess o

Amine Abdz 9 Nov 06, 2022
[ICCV 2021] Target Adaptive Context Aggregation for Video Scene Graph Generation

Target Adaptive Context Aggregation for Video Scene Graph Generation This is a PyTorch implementation for Target Adaptive Context Aggregation for Vide

Multimedia Computing Group, Nanjing University 44 Dec 14, 2022
Fake-user-agent-traffic-geneator - Python CLI Tool to generate fake traffic against URLs with configurable user-agents

Fake traffic generator for Gartner Demo Generate fake traffic to URLs with custo

New Relic Experimental 3 Oct 31, 2022
Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks

Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks This is the master thesi

Giacomo Arcieri 1 Mar 21, 2022
Object detection, 3D detection, and pose estimation using center point detection:

Objects as Points Object detection, 3D detection, and pose estimation using center point detection: Objects as Points, Xingyi Zhou, Dequan Wang, Phili

Xingyi Zhou 6.7k Jan 03, 2023
3D Human Pose Machines with Self-supervised Learning

3D Human Pose Machines with Self-supervised Learning Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, “3D Human Pose Machines with Self

Chenhan Jiang 398 Dec 20, 2022
A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Hyunsoo Cho 1 Dec 20, 2021
Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation

Auto-Seg-Loss By Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, Jifeng Dai This is the official implementation of the ICLR 2021 paper Auto

61 Dec 21, 2022
Fully Adaptive Bayesian Algorithm for Data Analysis (FABADA) is a new approach of noise reduction methods. In this repository is shown the package developed for this new method based on \citepaper.

Fully Adaptive Bayesian Algorithm for Data Analysis FABADA FABADA is a novel non-parametric noise reduction technique which arise from the point of vi

18 Oct 20, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Jan 07, 2023
A library for Deep Learning Implementations and utils

deeply A Deep Learning library Table of Contents Features Quick Start Usage License Features Python 2.7+ and Python 3.4+ compatible. Quick Start $ pip

Achilles Rasquinha 1 Dec 12, 2022
LightningFSL: Pytorch-Lightning implementations of Few-Shot Learning models.

LightningFSL: Few-Shot Learning with Pytorch-Lightning In this repo, a number of pytorch-lightning implementations of FSL algorithms are provided, inc

Xu Luo 76 Dec 11, 2022
Versatile Generative Language Model

Versatile Generative Language Model This is the implementation of the paper: Exploring Versatile Generative Language Model Via Parameter-Efficient Tra

Zhaojiang Lin 17 Dec 02, 2022
Powerful and efficient Computer Vision Annotation Tool (CVAT)

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 01, 2023
Official pytorch implementation for Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion (CVPR 2022)

Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion This repository contains a pytorch implementation of "Learning to Listen: Modeling

50 Dec 17, 2022
Use evolutionary algorithms instead of gridsearch in scikit-learn

sklearn-deap Use evolutionary algorithms instead of gridsearch in scikit-learn. This allows you to reduce the time required to find the best parameter

rsteca 709 Jan 03, 2023
FB-tCNN for SSVEP Recognition

FB-tCNN for SSVEP Recognition Here are the codes of the tCNN and FB-tCNN in the paper "Filter Bank Convolutional Neural Network for Short Time-Window

Wenlong Ding 12 Dec 14, 2022
Learning View Priors for Single-view 3D Reconstruction (CVPR 2019)

Learning View Priors for Single-view 3D Reconstruction (CVPR 2019) This is code for a paper Learning View Priors for Single-view 3D Reconstruction by

Hiroharu Kato 38 Aug 17, 2022
Forecasting for knowable future events using Bayesian informative priors (forecasting with judgmental-adjustment).

What is judgyprophet? judgyprophet is a Bayesian forecasting algorithm based on Prophet, that enables forecasting while using information known by the

AstraZeneca 56 Oct 26, 2022