3D Human Pose Machines with Self-supervised Learning

Overview

3D Human Pose Machines with Self-supervised Learning

Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, “3D Human Pose Machines with Self-supervised Learning”. To appear in IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 2019.

This repository implements a 3D human pose machine to resolve 3D pose sequence generation for monocular frames, and includes a concise self-supervised correction mechanism to enhance our model by retaining the 3D geometric consistency. The main part is written in C++ and powered by Caffe deep learning toolbox. Another is written in Python and powered by Tensorflow.

Results

We proposed results on the Human3.6M, KTH Football II and MPII dataset.

   

   

   

License

This project is Only released for Academic Research Use.

Get Started

Clone the repo:

git clone https://github.com/chanyn/3Dpose_ssl.git

or directly download from https://www.dropbox.com/s/qycpjinof2ishw9/3Dpose_ssl.tar.gz?dl=0 (including datasets and well-compiled caffe under cuda-8.0)

Our code is organized as follows:

caffe-3dssl/: support caffe
models/: pretrained models and results
prototxt/: network architecture definitions
tensorflow/: code for online refine 
test/: script that run results split by action 
tools/: python and matlab code 

Requirements

  1. NVIDIA GPU and cuDNN are required to have fast speeds. For now, CUDA 8.0 with cuDNN 5.1 has been tested. The other versions should be working.
  2. Caffe Python wrapper is required.
  3. Tensorflow 1.1.0
  4. python 2.7.13
  5. MATLAB
  6. Opencv-python

Installation

  1. Build 3Dssl Caffe

       cd $ROOT/caffe-3dssl    # Follow the Caffe installation instructions here:    #   http://caffe.berkeleyvision.org/installation.html        # If you're experienced with Caffe and have all of the requirements installed    # and your Makefile.config in place, then simply do:    make all -j 8        make pycaffe    

  1. Install Tensorflow

Datasets

  • Human3.6m

  We change annotation of Human3.6m to hold 16 points ( 'RFoot' 'RKnee' 'RHip' 'LHip' 'LKnee' 'LFoot' 'Hip' 'Spine' 'Thorax' 'Head' 'RWrist' 'RElbow'  'RShoulder' 'LShoulder' 'LElbow' 'LWrist') in keeping with MPII.

  We have provided count mean file and protocol #I & protocol #III split list of Human3.6m. Follow Human3.6m website to download videos and API. We split each video per 5 frames, you can directly download processed square data in this link.  And list format of 16skel_train/test_* is [img_path] [P12dx, P12dy, P22dx, P22dy,..., P13dx, P13dy, P13dz, P23dx, P23dy, P23dz,...] clip. Clip = 0 denote reset lstm.

  shell   # files construction   h36m   |_gt # 2d and 3d annotations splited by actions   |_hg2dh36m # 2d estimation predicted by *Hourglass*, 'square' denotes prediction of square image.   |_ours_2d # 2d prediction from our model   |_ours_3d # 3d coarse prediction of *Model Extension: mask3d*   |_16skel_train_2d3d_clip.txt # train list of *Protocol I*   |_16skel_test_2d3d_clip.txt   |_16skel_train_2d3d_p3_clip.txt # train list of *Protocol III*   |_16skel_test_2d3d_p3_clip.txt   |_16point_mean_limb_scaled_max_min.csv #16 points normalize by (x-min) / (max-min)  

  After setting up Human3.6m dataset following its illustration and download the above training/testing list. You should update “root_folder” paths in CAFFE_ROOT/examples/.../*.prototxt for images and annotation director.

  • MPII

  We crop and square single person from  all images and update 2d annotation in train_h36m.txt (resort points according to order of Human3.6m points).

    mkdir data/MPII   cd data/MPII   wget -v https://drive.google.com/open?id=16gQJvf4wHLEconStLOh5Y7EzcnBUhoM-   tar -xzvf MPII_square.tar.gz   rm -f MPII_square.tar.gz  

 

Training

Offline Phase

Our model consists of two cascade modules, so the training phase can be divided into the following steps:

cd CAFFE_ROOT
  1. Pre-train the 2D pose sub-network with MPII. You can follow CPM or Hourglass or other 2D pose estimation method. We provide pretrained CPM-caffemodel. Please put it into CAFFE_ROOT/models/.

  2. Train 2D-to-3D pose transformer module with Human3.6M. And we fix the parameters of the 2D pose sub-network. The corresponding prototxt file is in examples/2D_to_3D/bilstm.prototxt.

       sh examples/2D_to_3D/train.sh    

  1. To train 3D-to-2D pose projector module, we fix the above module weights. And we need in the wild 2D Pose dataset to help training (we choose MPII).

   sh    sh examples/3D_to_2D/train.sh    

  1. Fine-tune the whole model jointly. We provide trained model and coarse prediction of Protocol I and Protocol III.

   sh    sh examples/finetune_whole/train.sh    

  1. Model extension: Add rand mask to relieve model bias. We provide corresponding model files in examples/mask3d.

   sh    sh examples/mask3d/train.sh    

Model Inference

3D-to-2D project module is initialized from the well-trained model, and they will be updated by minimizing the difference between the predicted 2D pose and projected 2D pose.

  shell   # Step1: Download the trained model   cd PROJECT_ROOT   mkdir models   cd models   wget -v https://drive.google.com/open?id=1dMuPuD_JdHuMIMapwE2DwgJ2IGK04xhQ   unzip model_extension_mask3d.zip   rm -r model_extension_mask3d.zip   cd ../     # Step2: save coarse 3D prediction   cd test   # change 'data_root' in test_human16.sh   # change 'root_folder' in template_16_merge.prototxt   # test_human16.sh [$1 deploy.prototxt] [$2 trained model] [$3 save dir] [$4 batchsize]   sh test_human16.sh . ../models/model_extension_mask3d/mask3d_iter_400000.caffemodel mask3d 5     # Step3: online refine 3D pose prediction   # protocal: 1/3 , default is 1   # pose2d: ours/hourglass/gt, default is ours   # coarse_3d: saved results in Sept2   python pred_v2.py --trained_model ../models/model_extension_mask3d/mask3d-400000.pkl --protocol 1 --data_dir /data/h36m/ --coarse_3d ../test/mask3d --save srr_results --pose2d hourglass  

 

  shell   # Maybe you want to predict 2d.   # The model we use to predict 2d pose is similar to our 3dpredict model without ssl module.   # Or you can use Hourglass(https://github.com/princeton-vl/pose-hg-demo) to predict 2d pose     # Step1.1: Download the trained merge model   cd PROJECT_ROOT   mkdir models && cd models   wget -v https://drive.google.com/open?id=19kTyttzUnm_1_7HEwoNKCXPP2QVo_zcK   unzip our2d.zip   rm -r our2d.zip   # move 2d prototxt to PROJECT_ROOT/test/   mv our2d/2d ../test/   cd ../     # Step1.2: save 2D prediction   cd test   # change 'data_root' in test_human16.sh   # change 'root_folder' in 2d/template_16_merge.prototxt   # test_human16.sh [$1 deploy.prototxt] [$2 trained model] [$3 save dir] [$4 batchsize]   sh test_human16.sh 2d/ ../models/our2d/2d_iter_800000.caffemodel our2d 5   # replace predict 2d pose in data dir or change data_dir in tensorflow/pred_v2.py   mv our2d /data/h36m/ours_2d/bilstm2d-p1-800000       # Step2 is same as above       # Step3: online refine 3D pose prediction   # protocal: 1/3 , default is 1   # pose2d: ours/hourglass/gt, default is ours   # coarse_3d: saved results in Sept2   python pred_v2.py --trained_model ../models/model_extension_mask3d/mask3d-400000.pkl --protocol 1 --data_dir /data/h36m/ --coarse_3d ../test/mask3d --save srr_results --pose2d ours  

 

  • Inference with yourself

  The only difference is that you should transfer caffemodel of 3D-to-2D project module to pkl file. We provide gen_refinepkl.py in tools/.

  sh   # Follow above Step1~2 to produce coarse 3d prediction and 2d pose.   # transfer caffemodel of SRR module to python .pkl file   python tools/gen_refinepkl.py CAFFE_ROOT CAFFEMODEL_DIR --pkl_dir model.pkl     # online refine 3D pose prediction   python pred_v2.py --trained_model model.pkl  

 

  • Evaluation

  shell   # Print MPJP   run tools/eval_h36m.m     # Visualization of 2dpose/ 3d gt pose/ 3d coarse pose/ 3d refine pose   # Please change data_root in visualization.m before running   run visualization.m  

Citation

@article{wang20193d,
  title={3D Human Pose Machines with Self-supervised Learning},
  author={Wang, Keze and Lin, Liang and Jiang, Chenhan and Qian, Chen and Wei, Pengxu},
  journal={IEEE transactions on pattern analysis and machine intelligence},
  year={2019},
  publisher={IEEE}
}
Owner
Chenhan Jiang
Chenhan Jiang
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

peng gao 42 Nov 26, 2022
RoMa: A lightweight library to deal with 3D rotations in PyTorch.

RoMa: A lightweight library to deal with 3D rotations in PyTorch. RoMa (which stands for Rotation Manipulation) provides differentiable mappings betwe

NAVER 90 Dec 27, 2022
Minimal implementation of PAWS (https://arxiv.org/abs/2104.13963) in TensorFlow.

PAWS-TF 🐾 Implementation of Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples (PAWS)

Sayak Paul 43 Jan 08, 2023
a basic code repository for basic task in CV(classification,detection,segmentation)

basic_cv a basic code repository for basic task in CV(classification,detection,segmentation,tracking) classification generate dataset train predict de

1 Oct 15, 2021
Evaluation Pipeline for our ECCV2020: Journey Towards Tiny Perceptual Super-Resolution.

Journey Towards Tiny Perceptual Super-Resolution Test code for our ECCV2020 paper: https://arxiv.org/abs/2007.04356 Our x4 upscaling pre-trained model

Royson 6 Mar 30, 2022
Pytorch implementation of Hinton's Dynamic Routing Between Capsules

pytorch-capsule A Pytorch implementation of Hinton's "Dynamic Routing Between Capsules". https://arxiv.org/pdf/1710.09829.pdf Thanks to @naturomics fo

Tim Omernick 625 Oct 27, 2022
Code and models for "Rethinking Deep Image Prior for Denoising" (ICCV 2021)

DIP-denosing This is a code repo for Rethinking Deep Image Prior for Denoising (ICCV 2021). Addressing the relationship between Deep image prior and e

Computer Vision Lab. @ GIST 36 Dec 29, 2022
CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021

CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021 How to cite If you use these data please cite the o

Digital Linguistics 2 Dec 20, 2021
Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions"

ModelNet-C Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions". For the latest updates, see: sites.google.com

Jiawei Ren 45 Dec 28, 2022
Implementing Vision Transformer (ViT) in PyTorch

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

2 Dec 24, 2021
Code base for reproducing results of I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics. NeurIPS (2021)

Learning to Execute (L2E) Official code base for completely reproducing all results reported in I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learnin

3 May 18, 2022
VGGFace2-HQ - A high resolution face dataset for face editing purpose

The first open source high resolution dataset for face swapping!!! A high resolution version of VGGFace2 for academic face editing purpose

Naiyuan Liu 232 Dec 29, 2022
Koopman operator identification library in Python

pykoop pykoop is a Koopman operator identification library written in Python. It allows the user to specify Koopman lifting functions and regressors i

DECAR Systems Group 34 Jan 04, 2023
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier

LSTMs for Human Activity Recognition Human Activity Recognition (HAR) using smartphones dataset and an LSTM RNN. Classifying the type of movement amon

Guillaume Chevalier 3.1k Dec 30, 2022
Clockwork Variational Autoencoder

Clockwork Variational Autoencoders (CW-VAE) Vaibhav Saxena, Jimmy Ba, Danijar Hafner If you find this code useful, please reference in your paper: @ar

Vaibhav Saxena 35 Nov 06, 2022
Signals-backend - A suite of card games written in Python

Card game A suite of card games written in the Python language. Features coming

1 Feb 15, 2022
Official implementation of our CVPR2021 paper "OTA: Optimal Transport Assignment for Object Detection" in Pytorch.

OTA: Optimal Transport Assignment for Object Detection This project provides an implementation for our CVPR2021 paper "OTA: Optimal Transport Assignme

217 Jan 03, 2023
Orchestrating Distributed Materials Acceleration Platform Tutorial

Orchestrating Distributed Materials Acceleration Platform Tutorial This tutorial for orchestrating distributed materials acceleration platform was pre

BIG-MAP 1 Jan 25, 2022
An easy-to-use app to visualise attentions of various VQA models.

Ask Me Anything: A tool for visualising Visual Question Answering (AMA) An easy-to-use app to visualise attentions of various VQA models. Please click

Apoorve 37 Nov 13, 2022
Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentation"

Hyper-Convolution Networks for Biomedical Image Segmentation Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentatio

Tianyu Ma 17 Nov 02, 2022