Code for the paper "Functional Regularization for Reinforcement Learning via Learned Fourier Features"

Overview

Reinforcement Learning with Learned Fourier Features

State-space Soft Actor-Critic Experiments

Move to the state-SAC-LFF repository.

cd state-SAC-LFF

To install the dependencies, use the provided environment.yml file

conda env create -f environment.yml

To run an experiment, the template for MLP and LFF experiments, respectively, are:

python main.py --policy PytorchSAC --env dm.quadruped.run --start_timesteps 5000 --hidden_dim 1024 --batch_size 1024 --n_hidden 3
python main.py --policy PytorchSAC --env dm.quadruped.run --start_timesteps 5000 --hidden_dim 1024 --batch_size 1024 --n_hidden 2 \
               --network_class FourierMLP --sigma 0.001 --fourier_dim 1024 --train_B --concatenate_fourier

The only thing that changes between the baseline is the number of hidden layers (we reduce by 1 to keep parameter count roughly the same), the network_class, the fourier_dim, sigma, train_B, and concatenate_fourier.

Image-space Soft Actor-Critic Experiments

Move to the image-SAC-LFF repository.

cd image-SAC-LFF

Install RAD dependencies:

conda env create -f conda_env.yml

To run an experiment, the template for CNN and CNN+LFF experiments, respectively, are:

python train.py --domain_name hopper --task_name hop --encoder_type fourier_pixel --action_repeat 4 \
                --num_eval_episodes 10 \--pre_transform_image_size 100 --image_size 84 --agent rad_sac \
                --frame_stack 3 --data_augs crop --critic_lr 1e-3 --actor_lr 1e-3 --eval_freq 10000 --batch_size 128 \
                --num_train_steps 1000000 --fourier_dim 128 --sigma 0.1 --train_B --concatenate_fourier
python train.py --domain_name hopper --task_name hop --encoder_type fair_pixel --action_repeat 4 \
                --num_eval_episodes 10 \--pre_transform_image_size 100 --image_size 84 --agent rad_sac \
                --frame_stack 3 --data_augs crop --critic_lr 1e-3 --actor_lr 1e-3 --eval_freq 10000 --batch_size 128 \
                --num_train_steps 1000000

Proximal Policy Optimization Experiments

Move to the state-PPO-LFF repository.

cd pytorch-a2c-ppo-acktr-gail

Install PPO dependencies:

conda env create -f environment.yml

To run an experiment, the template for MLP and LFF experiments, respectively, are:

python main.py --env-name Hopper-v2 --algo ppo --use-gae --log-interval 1 --num-steps 2048 --num-processes 1 \
               --lr 3e-4 --entropy-coef 0 --value-loss-coef 0.5 --ppo-epoch 10 --num-mini-batch 32 --gamma 0.99 \
               --gae-lambda 0.95 --num-env-steps 1000000 --use-linear-lr-decay --use-proper-time-limits \
               --hidden_dim 256 --network_class MLP --n_hidden 2 --seed 10
python main.py --env-name Hopper-v2 --algo ppo --use-gae --log-interval 1 --num-steps 2048 --num-processes 1 \
               --lr 3e-4 --entropy-coef 0 --value-loss-coef 0.5 --ppo-epoch 10 --num-mini-batch 32 --gamma 0.99 \
               --gae-lambda 0.95 --num-env-steps 1000000 --use-linear-lr-decay --use-proper-time-limits \
               --hidden_dim 256 --network_class FourierMLP --n_hidden 2 --sigma 0.01 --fourier_dim 64 \ 
               --concatenate_fourier --train_B --seed 10

Acknowledgements

We built the state-based SAC codebase off the TD3 repo by Fujimoto et al. We especially appreciated its lightweight bare-bones training loop. For the state-based SAC algorithm implementation and hyperparameters, we used this PyTorch SAC repo by Yarats and Kostrikov. For the SAC+RAD image-based experiments, we used the authors' implementation. Finally, we built off this PPO codebase by Ilya Kostrikov.

Owner
Alex Li
PhD student in machine learning at Carnegie Mellon University. Prev: undergrad at UC Berkeley.
Alex Li
The devkit of the nuPlan dataset.

The devkit of the nuPlan dataset.

Motional 264 Jan 03, 2023
SAFL: A Self-Attention Scene Text Recognizer with Focal Loss

SAFL: A Self-Attention Scene Text Recognizer with Focal Loss This repository implements the SAFL in pytorch. Installation conda env create -f environm

6 Aug 24, 2022
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
Repository for the paper "From global to local MDI variable importances for random forests and when they are Shapley values"

From global to local MDI variable importances for random forests and when they are Shapley values Antonio Sutera ( Antonio Sutera 3 Feb 23, 2022

Code release for the paper “Worldsheet Wrapping the World in a 3D Sheet for View Synthesis from a Single Image”, ICCV 2021.

Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image This repository contains the code for the following paper: R. Hu,

Meta Research 37 Jan 04, 2023
[NeurIPS 2020] Official repository for the project "Listening to Sound of Silence for Speech Denoising"

Listening to Sounds of Silence for Speech Denoising Introduction This is the repository of the "Listening to Sounds of Silence for Speech Denoising" p

Henry Xu 40 Dec 20, 2022
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 01, 2023
A machine learning benchmark of in-the-wild distribution shifts, with data loaders, evaluators, and default models.

WILDS is a benchmark of in-the-wild distribution shifts spanning diverse data modalities and applications, from tumor identification to wildlife monitoring to poverty mapping.

P-Lambda 437 Dec 30, 2022
This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

The-Emergence-of-Objectness This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

44 Oct 08, 2022
A PyTorch Implementation of Neural IMage Assessment

NIMA: Neural IMage Assessment This is a PyTorch implementation of the paper NIMA: Neural IMage Assessment (accepted at IEEE Transactions on Image Proc

yunxiaos 418 Dec 29, 2022
"NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search".

NAS-Bench-301 This repository containts code for the paper: "NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search". The

AutoML-Freiburg-Hannover 57 Nov 30, 2022
we propose a novel deep network, named feature aggregation and refinement network (FARNet), for the automatic detection of anatomical landmarks.

Feature Aggregation and Refinement Network for 2D Anatomical Landmark Detection Overview Localization of anatomical landmarks is essential for clinica

aoyueyuan 0 Aug 28, 2022
Can we visualize a large scientific data set with a surrogate model? We're building a GAN for the Earth's Mantle Convection data set to see if we can!

EarthGAN - Earth Mantle Surrogate Modeling Can a surrogate model of the Earth’s Mantle Convection data set be built such that it can be readily run in

Tim 0 Dec 09, 2021
Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other

ML_Model_implementaion Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other dectree_model: Implementation o

Anshuman Dalai 3 Jan 24, 2022
pixelNeRF: Neural Radiance Fields from One or Few Images

pixelNeRF: Neural Radiance Fields from One or Few Images Alex Yu, Vickie Ye, Matthew Tancik, Angjoo Kanazawa UC Berkeley arXiv: http://arxiv.org/abs/2

Alex Yu 1k Jan 04, 2023
A library for implementing Decentralized Graph Neural Network algorithms.

decentralized-gnn A package for implementing and simulating decentralized Graph Neural Network algorithms for classification of peer-to-peer nodes. De

Multimedia Knowledge and Social Analytics Lab 5 Nov 07, 2022
toroidal - a lightweight transformer library for PyTorch

toroidal - a lightweight transformer library for PyTorch Toroidal transformers are of smaller size and lower weight than the more common E-I types. Th

MathInf GmbH 64 Jan 07, 2023
DL course co-developed by YSDA, HSE and Skoltech

Deep learning course This repo supplements Deep Learning course taught at YSDA and HSE @fall'21. For previous iteration visit the spring21 branch. Lec

Yandex School of Data Analysis 1.3k Dec 30, 2022
Official code for "Focal Self-attention for Local-Global Interactions in Vision Transformers"

Focal Transformer This is the official implementation of our Focal Transformer -- "Focal Self-attention for Local-Global Interactions in Vision Transf

Microsoft 486 Dec 20, 2022
Point Cloud Registration using Representative Overlapping Points.

Point Cloud Registration using Representative Overlapping Points (ROPNet) Abstract 3D point cloud registration is a fundamental task in robotics and c

ZhuLifa 36 Dec 16, 2022