An imperfect information game is a type of game with asymmetric information

Overview

DecisionHoldem

An imperfect information game is a type of game with asymmetric information. Compared with perfect information game, imperfect information game is more common in life. Artificial intelligence in imperfect games like poker has made significant progress and success in recent years. The great success of Superhuman Poker AI, such as Libratus and Deepstack, attracts researchers to pay attention to poker research. However, the lack of open source code limits the development of Texas Hold'em AI to some extent.

This project introduces DecisionHoldem, a high-level AI for heads-up no-limit Texas hold'em with safer depth-limited solving with diverse opponents ranges to reduce the exploitability of the strategy.DecisionHoldem is mainly composed of two parts, namely the blueprint strategy and the real-time search part.

In the blueprint strategy part, DecisionHoldem first employs the hand abstraction technique and action abstraction to obtain an abstracted game. Then we used the linear CFR algorithm iteration on the abstracted game tree to calculate blueprint strategy on a workstation with 48 core CPUs for 3 - 4 days. The total number of iterations is about 200 million.

In the real-time search part, we propose a safer depth-limited solving algorithm than modicum's depth-limited solving algorithm on subgame by putting more possible ranges of opponent private hands into consideration for off-tree nodes. This algorithm can significantly improve the AI game level by reducing the exploitability of the strategy. The details of the algorithm will be introduced in subsequent articles soon.

To evaluate the performance of DecisionHoldem, we play it against Slumbot and OpenStackTwo, respectively. Slumbot is the champion of the 2018 Anual Computer Poker Competition and the only high-level poker AI currently available. About 20,000 games against Slumbot, DecisionHoldem's average profit is more remarkable than 730mbb/h, and it ranked first in statistics on November 26, 2021 (DecisionHoldem's name on the ranking is zqbAgent[2,3]). OpenStackTwo built-in OpenHoldem Texas Hold'em Confrontation Platform is a reproduced version of DeepStack. With about 2,000 games against OpenStack[1], DecisionHoldem's average profit is more excellent than 700mbb/h.

To promote artificial intelligence development in imperfect-information games, we have open-sourced the relevant code of DecisionHoldem with tools for playing against the Slumbot, OpenHoldem and human[5]. Meanwhile, we provide a simple program about Leduc poker, which helps to understand the algorithm framework and its mechanism.

百度

Blueprint Strategy

Requirements

  • For C++11 support
  • GraphViz software

Installation

  1. Clone repositories:
$ git clone https://github.com/AI-Decision/DecisionHoldem.git
  1. copy followed file to DecisionHoldem/PokerAI/cluster
sevencards_strength.bin
preflop_hand_cluster.bin
flop_hand_cluster.bin
turn_hand_cluster.bin
river_hand_cluster.bin
blueprint_strategy.dat

These data can be obtained through Baidu Netdisk.

Link: https://pan.baidu.com/s/157n-H1ECjEryAx0Z03p2_w
Extraction code: q1pv

Training Blueprint Strategy

  • Compile and Run:
$ cd DecisionHoldem/PokerAI
$ g++ Main.cpp -o Main.o -std=c++11 -mcmodel=large -lpthread
$ ./Main.o 0
  • When training is finished, getting blueprint strategy "blueprint_strategy.dat" in DecisionHoldem/PokerAI/cluster.

Evaluation for Blueprint Strategy

  • Best Response:
$ cd DecisionHoldem/PokerAI
$ g++ Main.cpp -o Main.o -std=c++11 -mcmodel=large -lpthread
$ ./Main.o 1

Interface For Holdem Game

AlascasiaHoldem.so and blueprint.so provides a interface for the agent to play with other agent or human in real game scenario.

  • AlascasiaHoldem.so
    It plays with real search.
  • Blueprint.so
    It only uses the blueprint strategy to play.

Human Against Agent

GUI application refer to PyPokerGUI.

  • Run:
$ cd DecisionHoldem/PokerAI/
$ python DecisionHoldem/pypokergui/server/poker.py 8000

Tt is necessary that AlascasiaHoldem.so is in directory "DecisionHoldem/PokerAI/".

Result

localhost:8000 百度

Slumbot Against Agent

https://www.slumbot.com/#
Results on November 26, 2021, DecisionHoldem registered as zqbAgent and ranked first in the leaderboard.

  • Run:
$ cd DecisionHoldem/PokerAI/
$ python DecisionHoldem/pypokergui/play_with_slumbot.py

百度

百度

OpenStackTwo Against Agent

http://holdem.ia.ac.cn/#/battle

  • Run:
$ cd DecisionHoldem/PokerAI/
$ python DecisionHoldem/pypokergui/play_with_ia_v4.py 888891 2 Bot 2000 OpenStackTwo

The Agent_against_OpenStackTwo file contains the information for each game in 2000 games, including the each action probability of our agent, opponents actions and game state.

PokerAI Project Frameworks

├── Poker            # game tree code
│   ├── Node.h              # data structure of every node in game tree
│   ├── Bulid_Tree.h        # traverse every possible hole card, community cards and legal actions to bulid the game tree
│   ├── Exploitability.h    # it compute the exploitability of game tree policy
│   ├── Save_load.h         # it can save game tree policy to a file and load file to bulid a game tree
│   └── Visualize_Tree.h    # Visualize game Tree
│
├── util            # 
│   ├── Engine.h            # it compute game result, judging win person and the person can get the number of chips and get the cluster of the player's hand
│   ├── Exploitability.h    # compute the strategy of best response
│   ├── ThreadPool.h        # Multithread control
│   └── Randint.h           # the class is to generate random number
│
├── Poker           # the foundation class of the poker game
│   ├── Card.h              # every card class, it's id range from 0 to 51
│   ├── Deck.h              # deck class of cards, it contains 52 cards
│   ├── Player.h            # player class,it's attributes contain initial chips, bet chips, small or big blind
│   ├── Table.h             # it's attributes contain players, pot and deck
│   └── State.h             # it is game state, contain every players infoset, legal actions
│
├── Depth_limit_Search.h # it is a algorithm of real time searching in each subgame 
├── Multi_Blureprint.h   # it is a blueprint mccfr algorithm which running with the multithread
└── BlueprintMCCFR.cpp   # it is a blueprint mccfr algorithm which running with the single thread

The Detail of BlueprintMCCFR.h

blueprint_cfr function
  • MCCFR algorithm for training the blueprint strategy.
blueprint_cfrp function
  • MCCFR prune algorithm for training the blueprint strategy.
dfs_discount function
  • discount the regret value.
update_strategy function
  • update the average strategy of blueprint

Visualize Game Tree

  • After running the function of visualizationsearch(root, "blueprint_subnode.stgy"), current folder will generate a 'blueprint_subnode.stgy' file.
$ cd GraphViz/bin
$ dot -Tpng blueprint_subnode.stgy > temp.png

Game tree example

百度

Related projects

GUI is based on a project which can be found here: https://github.com/ishikota/PyPokerGUI
demo project: https://github.com/zqbAse/PokerAI_Sim

Note

[1] www.holdem.ia.ac.cn
[2] www.slumbot.com
[3] https://github.com/ericgjackson/slumbot2017/issues/11
[4] Development Environment:A workstation with an Intel(R) Xeon(R) Gold 6240R CPU, and 512GB of RAM.
[5] Currently some source codes only provide compiled files, and they will be open sourced in the near future.

Authors

The project leader is Junge Zhang , and the main contributors are Dongdong Bai and Qibin Zhou. Kaiqi Huang co-supervises this project as well. In recent years, this team has been devoting to reinforcement learning, multi-agent system, decision-making intelligence.

If you use DecisionHoldem in your research, please cite the following paper.

Qibin Zhou, Dongdong Bai, Junge Zhang, Fuqing Duan, Kaiqi Huang. DecisionHoldem: Safe Depth-Limited Solving With Diverse Opponents for Imperfect-Information Games

License

GNU Affero General Public License v3.0

Owner
Decision AI
Decision AI
This package implements THOR: Transformer with Stochastic Experts.

THOR: Transformer with Stochastic Experts This PyTorch package implements Taming Sparsely Activated Transformer with Stochastic Experts. Installation

Microsoft 45 Nov 22, 2022
cl;asification problem using classification models in supervised learning

wine-quality-predition---classification cl;asification problem using classification models in supervised learning Wine Quality Prediction Analysis - C

Vineeth Reddy Gangula 1 Jan 18, 2022
Yolov5-opencv-cpp-python - Example of using ultralytics YOLO V5 with OpenCV 4.5.4, C++ and Python

yolov5-opencv-cpp-python Example of performing inference with ultralytics YOLO V

183 Jan 09, 2023
Pytorch Geometric Tutorials

Pytorch Geometric Tutorials

Antonio Longa 648 Jan 08, 2023
[NeurIPS 2020] Semi-Supervision (Unlabeled Data) & Self-Supervision Improve Class-Imbalanced / Long-Tailed Learning

Rethinking the Value of Labels for Improving Class-Imbalanced Learning This repository contains the implementation code for paper: Rethinking the Valu

Yuzhe Yang 656 Dec 28, 2022
LightLog is an open source deep learning based lightweight log analysis tool for log anomaly detection.

LightLog Introduction LightLog is an open source deep learning based lightweight log analysis tool for log anomaly detection. Function description [BG

25 Dec 17, 2022
A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking.

BeatNet A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking. This repository

Mojtaba Heydari 157 Dec 27, 2022
Tensorflow 2 Object Detection API kurulumu, GPU desteği, custom model hazırlama

Tensorflow 2 Object Detection API Bu tutorial, TensorFlow 2.x'in kararlı sürümü olan TensorFlow 2.3'ye yöneliktir. Bu, görüntülerde / videoda nesne a

46 Nov 20, 2022
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs

Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs ArXiv Abstract Convolutional Neural Networks (CNNs) have become the de f

Philipp Benz 12 Oct 24, 2022
Variational autoencoder for anime face reconstruction

VAE animeface Variational autoencoder for anime face reconstruction Introduction This repository is an exploratory example to train a variational auto

Minzhe Zhang 2 Dec 11, 2021
The personal repository of the work: *DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer*.

DanceNet3D The personal repository of the work: DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer. Dataset and Results Pleas

南嘉Nanga 36 Dec 21, 2022
Hypersim: A Photorealistic Synthetic Dataset for Holistic Indoor Scene Understanding

The Hypersim Dataset For many fundamental scene understanding tasks, it is difficult or impossible to obtain per-pixel ground truth labels from real i

Apple 1.3k Jan 04, 2023
Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters"

Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters" Pipeline of CLIP-Adapter CLIP-Adapter is a drop-in modul

peng gao 157 Dec 26, 2022
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022
This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures using receptive field analysis (RFA) and create graph visualizations of your architecture.

ReceptiveFieldAnalysisToolbox This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures usin

84 Nov 23, 2022
Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication"

NFFT4ANOVA Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication" This package uses th

Theresa Wagner 1 Aug 10, 2022
Tutorial materials for Part of NSU Intro to Deep Learning with PyTorch.

Intro to Deep Learning Materials are part of North South University (NSU) Intro to Deep Learning with PyTorch workshop series. (Slides) Related materi

Hasib Zunair 9 Jun 08, 2022
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity

[ICLR 2022] Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity by Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elen

VITA 18 Dec 31, 2022
Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user who joins your server.

Discord-Protect Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user wh

Tir Omar 2 Oct 28, 2021
ConvMAE: Masked Convolution Meets Masked Autoencoders

ConvMAE ConvMAE: Masked Convolution Meets Masked Autoencoders Peng Gao1, Teli Ma1, Hongsheng Li2, Jifeng Dai3, Yu Qiao1, 1 Shanghai AI Laboratory, 2 M

Alpha VL Team of Shanghai AI Lab 345 Jan 08, 2023