Does Pretraining for Summarization Reuqire Knowledge Transfer?

Overview

Does Pretraining for Summarization Reuqire Knowledge Transfer?

This repository is the official implementation of the work in the paper Does Pretraining for Summarization Reuqire Knowledge Transfer? to appear in Findings of EMNLP 2021.
You can find the paper on arXiv here: https://arxiv.org/abs/2109.04953

Requirements

This code requires Python 3 (tested using version 3.6)

To install requirements, run:

pip install -r requirements.txt

Preparing finetuning datasets

To prepare a summarization dataset for finetuning, run the corresponding script in the finetuning_datasetgen folder. For example, to prepare the cnn-dailymail dataset run:

cd finetuning_datasetgen
python cnndm.py

Running finetuning experiment

We show here how to run training, prediction and evaluation steps for a finetuning experiment. We assume that you have downloaded the pretrained models in the pretrained_models folder from the provided Google Drive link (see pretrained_models/README.md) If you want to pretrain models yourself, see latter part of this readme for the instructions.

All models in our work are trained using allennlp config files which are in .jsonnet format. To run a finetuning experiment, simply run

# for t5-like models
./pipeline_t5.sh 
   
    

# for pointer-generator models
./pipeline_pg.sh 
    

    
   

For example, for finetuning a T5 model on cnndailymail dataset, starting from a model pretrained with ourtasks-nonsense pretraining dataset, run

./pipeline_t5.sh finetuning_experiments/cnndm/t5-ourtasks-nonsense

Similarly, for finetuning a randomly-initialized pointer-generator model, run

./pipeline_pg.sh finetuning_experiments/cnndm/pg-randominit

The trained model and output files would be available in the folder that would be created by the script.

model.tar.gz contains the trained (finetuned) model

test_outputs.jsonl contains the outputs of the model on the test split.

test_genmetrics.json contains the ROUGE scores of the output

Creating pretraining datasets

We have provided the nonsense pretraining datasets used in our work via Google Drive (see dataset_root/pretraining_datasets/README.md for instructions)

However, if you want to generate your own pretraining corpus, you can run

cd pretraining_datasetgen
# for generating dataset using pretraining tasks
python ourtasks.py
# for generating dataset using STEP pretraining tasks
python steptasks.py

These commands would create pretraining datasets using nonsense. If you want to create datasets starting from wikipedia documents please look into the two scripts which guide you how to do that by commenting/uncommenting two blocks of code.

Pretraining models

Although we provide you the pretrained model checkpoints via GoogleDrive, if you want to pretrain your own models, you can do that by using the corresponding pretraining config file. As an example, we have provided a config file which pretrains on ourtasks-nonsense dataset. Make sure that the pretraining dataset files exist (either created by you or downloaded from GoogleDrive) before running the pretraining command. The pretraining is also done using the same shell scripts used for the finetuning experiments. For example, to pretrain a model on the ourtasks-nonsense dataset, simply run :

./pipeline_t5.sh pretraining_experiments/pretraining_t5_ourtasks_nonsense
Owner
Approximately Correct Machine Intelligence (ACMI) Lab
Research on machine learning, its social impacts, and applications to healthcare. PI—@zackchase
Approximately Correct Machine Intelligence (ACMI) Lab
This script runs neural style transfer against the provided content image.

Neural Style Transfer Content Style Output Description: This script runs neural style transfer against the provided content image. The content image m

Martynas Subonis 0 Nov 25, 2021
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

146 Dec 11, 2022
GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications

GPOEO GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications. We also implement ODPP [1] as a comparison. [1]

瑞雪轻飏 8 Sep 10, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.

DosGAN-PyTorch PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation

40 Nov 30, 2022
Individual Treatment Effect Estimation

CAPE Individual Treatment Effect Estimation Run CAPE python train_causal.py --loop 10 -m cape_cau -d NI --i_t 1 Run a baseline model python train_cau

S. Deng 4 Sep 02, 2022
Facial Image Inpainting with Semantic Control

Facial Image Inpainting with Semantic Control In this repo, we provide a model for the controllable facial image inpainting task. This model enables u

Ren Yurui 8 Nov 22, 2021
Lab course materials for IEMBA 8/9 course "Coding and Artificial Intelligence"

IEMBA 8/9 - Coding and Artificial Intelligence Dear IEMBA 8/9 students, welcome to our IEMBA 8/9 elective course Coding and Artificial Intelligence, t

Artificial Intelligence & Machine Learning (AI:ML Lab) @ HSG 1 Jan 11, 2022
Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung

Vending_Machine_(Mesin_Penjual_Minuman) Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung Raw Sketch untuk Essay Ringkasan P

QueenLy 1 Nov 08, 2021
Neighborhood Contrastive Learning for Novel Class Discovery

Neighborhood Contrastive Learning for Novel Class Discovery This repository contains the official implementation of our paper: Neighborhood Contrastiv

Zhun Zhong 56 Dec 09, 2022
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"

This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and

LancoPKU 25 Dec 11, 2022
Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator

DRL-robot-navigation Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator. Using Twin Delayed Deep Deterministic Policy Gra

87 Jan 07, 2023
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing Environment Tested on Ubuntu 14.04 64bit and 16.04 64bit Installation # disabl

gts3.org (<a href=[email protected])"> 581 Dec 30, 2022
Playable Video Generation

Playable Video Generation Playable Video Generation Willi Menapace, Stéphane Lathuilière, Sergey Tulyakov, Aliaksandr Siarohin, Elisa Ricci Paper: ArX

Willi Menapace 136 Dec 31, 2022
Using CNN to mimic the driver based on training data from Torcs

Behavioural-Cloning-in-autonomous-driving Using CNN to mimic the driver based on training data from Torcs. Approach First, the data was collected from

Sudharshan 2 Jan 05, 2022
Point detection through multi-instance deep heatmap regression for sutures in endoscopy

Suture detection PyTorch This repo contains the reference implementation of suture detection model in PyTorch for the paper Point detection through mu

artificial intelligence in the area of cardiovascular healthcare 3 Jul 16, 2022
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation E2EC: An End-to-End Contour-based Method for High-Quality H

zhangtao 146 Dec 29, 2022
NAVER BoostCamp Final Project

CV 14조 final project Super Resolution and Deblur module Inference code & Pretrained weight Repo SwinIR Deblur 실행 방법 streamlit run WebServer/Server_SRD

JiSeong Kim 5 Sep 06, 2022
Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks

LMMNN Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks This is the working dire

Giora Simchoni 10 Nov 02, 2022
Finding all things on-prem Microsoft for password spraying and enumeration.

msprobe About Installing Usage Examples Coming Soon Acknowledgements About Finding all things on-prem Microsoft for password spraying and enumeration.

205 Jan 09, 2023