vsketch is a Python generative art toolkit for plotters

Overview

vsketch

python Test Documentation Status

What is vsketch?

vsketch is a Python generative art toolkit for plotters with the following focuses:

  • Accessibility: vsketch is easy to learn and feels familiar thanks to its API strongly inspired from Processing.
  • Minimized friction: vsketch automates every part of the creation process (project initialisation, friction-less iteration, export to plotter-ready files) through a CLI tool called vsk and a tight integration with vpype.
  • Plotter-centric: vsketch is made for plotter users, by plotter users. It's feature set is focused on the peculiarities of this medium and doesn't aim to solve other problems.
  • Interoperability: vsketch plays nice with popular packages such as Numpy and Shapely, which are true enabler for plotter generative art.

vsketch is the sum of two things:

  • A CLI tool named vsk to automate every part of a sketch project lifecycle::
    • Sketch creation based on a customizable template.
    • Interactive rendering of your sketch with live-reload and custom parameters.
    • Batch export to SVG with random seed and configuration management as well as multiprocessing support.
  • An easy-to-learn API similar to Processing to implement your sketches.

This project is at an early the stage and needs contributions. You can help by providing feedback and improving the documentation.

Installing and Running the examples

The easiest way to get started is to obtain a local copy of vsketch's repository and run the examples:

$ git clone https://github.com/abey79/vsketch
$ cd vsketch

Create a virtual environment and activate it:

$ python3 -m venv venv
$ source venv/bin/activate

Install vsketch:

$ pip install .

You are read to run the examples:

$ vsk run examples/quick_draw

Additional examples may be found in the author's personal collection of sketches.

Getting started

This section is meant as a quick introduction of the workflow supported by vsketch. Check the documentation for a more complete overview.

Open a terminal and create a new project:

$ vsk init my_project

This will create a new project structure that includes everything you need to get started:

$ ls my_project
config
output
sketch_my_project.py

The sketch_my_project.py file contains a skeleton for your sketch. The config and output sub-directories are used by vsk to store configurations and output SVGs.

Open sketch_my_project.py in your favourite editor and modify it as follows:

None: vsk.vpype("linemerge linesimplify reloop linesort") if __name__ == "__main__": SchotterSketch.display() ">
import vsketch

class SchotterSketch(vsketch.SketchClass):
    def draw(self, vsk: vsketch.SketchClass) -> None:
        vsk.size("a4", landscape=False)
        vsk.scale("cm")

        for j in range(22):
            with vsk.pushMatrix():
                for i in range(12):
                    with vsk.pushMatrix():
                        vsk.rotate(0.03 * vsk.random(-j, j))
                        vsk.translate(
                            0.01 * vsk.randomGaussian() * j,
                            0.01 * vsk.randomGaussian() * j,
                        )
                        vsk.rect(0, 0, 1, 1)
                    vsk.translate(1, 0)
            vsk.translate(0, 1)

    def finalize(self, vsk: vsketch.Vsketch) -> None:
        vsk.vpype("linemerge linesimplify reloop linesort")

if __name__ == "__main__":
    SchotterSketch.display()

Your sketch is now ready to be run with the following command:

$ vsk run my_project

You should see this:

image

Congratulation, you just reproduced Georg Nees' famous artwork!

Wouldn't be nice if you could interactively interact with the script's parameters? Let's make this happen.

Add the following declaration at the top of the class:

class SchotterSketch(vsketch.SketchClass):
    columns = vsketch.Param(12)
    rows = vsketch.Param(22)
    fuzziness = vsketch.Param(1.0)
    
    # ...

Change the draw() method as follows:

    def draw(self, vsk: vsketch.Vsketch) -> None:
        vsk.size("a4", landscape=False)
        vsk.scale("cm")

        for j in range(self.rows):
            with vsk.pushMatrix():
                for i in range(self.columns):
                    with vsk.pushMatrix():
                        vsk.rotate(self.fuzziness * 0.03 * vsk.random(-j, j))
                        vsk.translate(
                            self.fuzziness * 0.01 * vsk.randomGaussian() * j,
                            self.fuzziness * 0.01 * vsk.randomGaussian() * j,
                        )
                        vsk.rect(0, 0, 1, 1)
                    vsk.translate(1, 0)
            vsk.translate(0, 1)

Hit ctrl-S/cmd-S to save and, lo and behold, corresponding buttons just appeared in the viewer without even needing to restart it! Here is how it looks with some more fuzziness:

image

Let's play a bit with the parameters until we find a combination we like, then hit the Save button and enter a "Best config" as name.

image

We just saved a configuration that we can load at any time.

Finally, being extremely picky, it would be nice to be able to generate ONE HUNDRED versions of this sketch with various random seeds, in hope to find the most perfect version for plotting and framing. vsk will do this for you, using all CPU cores available:

$ vsk save --config "Best config" --seed 0..99 my_project

You'll find all the SVG file in the project's output sub-directory:

image

Next steps:

  • Use vsk integrated help to learn about the all the possibilities (vsk --help).
  • Learn the vsketch API on the documentation's overview and reference pages.

Acknowledgments

Part of this project's documentation is inspired by or copied from the Processing project.

License

This project is licensed under the MIT license. The documentation is licensed under the CC BY-NC-SA 4.0 license. See the documentation for details.

Computational Xmas Tree lights!

Computational Xmas Tree This repo contains the code for the computational illumination of a Christmas Tree! It is based on the work by Matt Parker fro

GSD6338 146 Dec 23, 2022
The InvGears workbench for FreeCAD allows the creation of gear systems

FreeCAD InvGears workbench Current version 0.1.1 Overview The InvGears workbench allows the creation of gear systems. The gear generation algorithm is

Sebastian Ernesto Garcia 8 Dec 10, 2021
PyLibTiff - a wrapper to the libtiff library to Python using ctypes

PyLibTiff is a package that provides: a wrapper to the libtiff library to Python using ctypes. a pure Python module for reading and writing TIFF and L

Pearu Peterson 105 Dec 21, 2022
:rocket: A minimalist comic reader

Pynocchio A minimalist comic reader Features | Installation | Contributing | Credits This screenshots contains a page of the webcomic Pepper&Carrot by

Michell Stuttgart 73 Aug 02, 2022
Fuzzware is a project for automated, self-configuring fuzzing of firmware images

Fuzzware Fuzzware is a project for automated, self-configuring fuzzing of firmware images. The idea of this project is to configure the memory ranges

190 Dec 21, 2022
A python based library to help you create unique generative images based on Rarity for your next NFT Project

Generative-NFT Generate Unique Images based on Rarity A python based library to help you create unique generative images based on Rarity for your next

Kartikay Bhutani 8 Sep 21, 2022
New program to export a Blender model to the LBA2 model format.

LBA2 Blender to Model 2 This is a new program to export a Blender model to the LBA2 model format. This is also the first publicly released version of

2 Nov 30, 2022
Easily turn large sets of image urls to an image dataset. Can download, resize and package 100M urls in 20h on one machine.

img2dataset Easily turn large sets of image urls to an image dataset. Can download, resize and package 100M urls in 20h on one machine. Also supports

Romain Beaumont 1.4k Jan 01, 2023
Plots the graph of a function with ASCII characters.

ASCII Graph Plotter Plots the graph of a function with ASCII characters. See the change log here. Developed by InformaticFreak (c) 2021 How to use py

InformaticFreak 2 Apr 29, 2022
Rembg is a tool to remove images background.

Rembg is a tool to remove images background.

Daniel Gatis 7.8k Jan 05, 2023
Napari plugin for iteratively improving 3D instance segmentation of cells (u-net x watershed)

iterseg napari plugin for iteratively improving unet-watershed segmentation This napari plugin was generated with Cookiecutter using @napari's cookiec

Abigail McGovern 3 May 16, 2022
MetaStalk is a tool that can be used to generate graphs from the metadata of JPEG, TIFF, and HEIC images

MetaStalk About MetaStalk is a tool that can be used to generate graphs from the metadata of JPEG, TIFF, and HEIC images, which are tested. More forma

Cyb3r Jak3 1 Jul 05, 2021
Tools for making image cutouts from sets of TESS full frame images

Cutout tools for astronomical images Astrocut provides tools for making cutouts from sets of astronomical images with shared footprints. It is under a

Space Telescope Science Institute 20 Dec 16, 2022
A GUI-based (PyQt5) tool used to design 2D linkage mechanism.

Pyslvs-UI A GUI-based (PyQt5) tool used to design 2D linkage mechanism. Planar Linkages Simulation Python-Solvespace: Kernel from Solvespace with Cyth

Yuan Chang 141 Dec 13, 2022
A Blender add-on to create interesting meshes using symmetry

Procedural Symmetries This Blender add-on automates the process of iteratively applying a set of reflection planes to a base mesh. The result will con

1 Dec 29, 2021
Manipulate EXIF and IFD metadata.

Tyf Copyright Distribution Support this project Buy Ѧ and: Send Ѧ to AUahWfkfr5J4tYakugRbfow7RWVTK35GPW Vote arky on Ark blockchain and earn Ѧ weekly

16 Jan 21, 2022
Fixed Version Of Blender Low Poly Rock Generator For Blender 3.0.0

Blender (3.0.0) - Low Poly Rock Generator This is an addon for Blender 3.0.0 to generate low poly rocks. It was based on an addon that unfortunately h

3 Mar 24, 2022
A minimal, standalone viewer for 3D animations stored as stop-motion sequences of individual .obj mesh files.

ObjSequenceViewer V0.5 A minimal, standalone viewer for 3D animations stored as stop-motion sequences of individual .obj mesh files. Installation: pip

csmailis 2 Aug 04, 2022
Fill holes in binary 2D & 3D images fast.

Fill holes in binary 2D & 3D images fast.

11 Dec 09, 2022
A ray tracing render implemented using Taichi language.

A ray tracing render implemented using Taichi language.

Mingrui Zhang 45 Oct 23, 2022