TC-GNN with Pytorch integration

Overview

TC-GNN (Running Sparse GNN on Dense Tensor Core on Ampere GPU)

  • Cite this project and paper.
@inproceedings{TC-GNN,
  title={TC-GNN: Accelerating Sparse Graph Neural Network Computation Via Dense Tensor Core on GPUs},
  author={Yuke Wang and Boyuan Feng and Yufei Ding},
  booktitle={Arxiv},
  year={2022}
}
  • Clone this project.
git clone [email protected]:YukeWang96/TCGNN-Pytorch.git
  • OS & Compiler:
  • Ubuntu 16.04+
  • gcc >= 7.5
  • cmake >= 3.14
  • CUDA >= 11.0 and nvcc >= 11.0

Files and Directories.

  • config.py: the configuration file for the shape of a TC block.
  • bench.py: the benchmark file for invoking main_tcgnn.py for various datasets and models.
  • main_tcgnn.py: the main entry for running TC-GNN.
  • count_TC_blocks.py: counting the total number of TC blocks without sparse-graph translation.
  • proc_prof.py: get the detailed GPU kernel metrics from the ncu csv output.
  • TCGNN_conv/: the directory for core TC-GNN implementations, including TCGNN_kernel.cu and TCGNN.cpp.

Environment Setup.

[Method-1] Install via Docker (Recommended).

  • Go to Docker/
  • Run ./build.sh
  • Run ./launch.sh

[Method-2] Install via Conda.

  • Install conda on system Toturial.
  • Create a conda environment:
conda create -n env_name python=3.6
  • Install Pytorch:
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c conda-forge

or using pip [Note that make sure the pip you use is the pip from current conda environment. You can check this by which pip]

pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html
conda install -c dglteam dgl-cuda11.0
pip install torch requests tqdm
pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.8.0+cu111.html
pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.8.0+cu111.html
pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-1.8.0+cu111.html
pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.8.0+cu111.html
pip install torch-geometric

Install TC-GNN.

Go to TCGNN_conv/, then run

./build.sh

to install the TCGNN_conv modules with Pytorch binding. Note that this step is required for both Docker and Conda setup.

Download graph datasets.

Get the preprocessed datasets in .npy at here, then run

tar -zxvf tcgnn-ae-graphs.tar.gz

Running PyG baseline.

  • Go to pyg_baseline/ directory;
  • Pass the --model parameter in pyg_main.py with gcn and gin to profile the example GCN and GIN model, respectively;
  • ./0_bench.py| tee run_pyg.log to run the script and the report 10 epoch runtime for all evaluated datasets.
  • ./1_log2csv.py to convert the run_pyg.log to run_pyg.csv for ease of analysis.

Running DGL baseline.

  • Go to dgl_baseline/ directory
  • Pass the --model parameter in dgl_main.py with gcn and gin to profile the example GCN and GIN model, respectively;
  • ./0_bench.py| tee run_dgl.log to run the script and the report 10 epoch runtime for all evaluated datasets.
  • ./1_log2csv.py to convert the run_dgl.log to run_dgl.csv for ease of visualization.

Running TC-GNN.

  • Under the current project directory
  • ./0_bench.py| tee run_TCGNN.log to run the script and the report 10 epoch runtime for all evaluated datasets.
  • ./1_log2csv.py to convert the run_TCGNN.log to run_TCGNN.csv for ease of analysis.
You might also like...
🐸STT integration examples

🐸 STT 0.9.x Examples These are various examples on how to use or integrate 🐸 STT using our packages. It is a good way to just try out 🐸 STT before

Official repo for AutoInt: Automatic Integration for Fast Neural Volume Rendering in CVPR 2021
Official repo for AutoInt: Automatic Integration for Fast Neural Volume Rendering in CVPR 2021

AutoInt: Automatic Integration for Fast Neural Volume Rendering CVPR 2021 Project Page | Video | Paper PyTorch implementation of automatic integration

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

Dahua Camera and Doorbell Home Assistant Integration
Dahua Camera and Doorbell Home Assistant Integration

Home Assistant Dahua Integration The Dahua Home Assistant integration allows you to integrate your Dahua cameras and doorbells in Home Assistant. It's

MaRS - a recursive filtering framework that allows for truly modular multi-sensor integration
MaRS - a recursive filtering framework that allows for truly modular multi-sensor integration

The Modular and Robust State-Estimation Framework, or short, MaRS, is a recursive filtering framework that allows for truly modular multi-sensor integration

ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration
ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

ROSITA News & Updates (24/08/2021) Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model. (15/08/2021) Releas

Wafer Fault Detection using MlOps Integration
Wafer Fault Detection using MlOps Integration

Wafer Fault Detection using MlOps Integration This is an end to end machine learning project with MlOps integration for predicting the quality of wafe

Official code for On Path Integration of Grid Cells: Group Representation and Isotropic Scaling (NeurIPS 2021)
Official code for On Path Integration of Grid Cells: Group Representation and Isotropic Scaling (NeurIPS 2021)

On Path Integration of Grid Cells: Group Representation and Isotropic Scaling This repo contains the official implementation for the paper On Path Int

Comments
  • Any docs about this project?

    Any docs about this project?

    Hi I came across this project and found the implementation is quite interesting. Is there any docs/paper that detail this project? Or you have any plan to release these kinds of information in the future?

    Thanks

    opened by mmmeee1111 1
Releases(v0.2)
Owner
YUKE WANG
https://wang-yuke.com
YUKE WANG
A pytorch implementation of faster RCNN detection framework (Use detectron2, it's a masterpiece)

Notice(2019.11.2) This repo was built back two years ago when there were no pytorch detection implementation that can achieve reasonable performance.

Ruotian(RT) Luo 1.8k Jan 01, 2023
Best practices for segmentation of the corporate network of any company

Best-practice-for-network-segmentation What is this? This project was created to publish the best practices for segmentation of the corporate network

2k Jan 07, 2023
Assessing syntactic abilities of BERT

BERT-Syntax Assesing the syntactic abilities of BERT. What Evaluate Google's BERT-Base and BERT-Large models on the syntactic agreement datasets from

Yoav Goldberg 147 Aug 02, 2022
Its a Plant Leaf Disease Detection System based on Machine Learning.

My_Project_Code Its a Plant Leaf Disease Detection System based on Machine Learning. I have used Tomato Leaves Dataset from kaggle. This system detect

Sanskriti Sidola 3 Jun 15, 2022
Pytorch implementation of COIN, a framework for compression with implicit neural representations 🌸

COIN 🌟 This repo contains a Pytorch implementation of COIN: COmpression with Implicit Neural representations, including code to reproduce all experim

Emilien Dupont 104 Dec 14, 2022
DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.

Differentiable Model Compression via Pseudo Quantization Noise DiffQ performs differentiable quantization using pseudo quantization noise. It can auto

Facebook Research 145 Dec 30, 2022
In this project, we create and implement a deep learning library from scratch.

ARA In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The

22 Aug 23, 2022
FANet - Real-time Semantic Segmentation with Fast Attention

FANet Real-time Semantic Segmentation with Fast Attention Ping Hu, Federico Perazzi, Fabian Caba Heilbron, Oliver Wang, Zhe Lin, Kate Saenko , Stan Sc

Ping Hu 42 Nov 30, 2022
Parallel and High-Fidelity Text-to-Lip Generation; AAAI 2022 ; Official code

Parallel and High-Fidelity Text-to-Lip Generation This repository is the official PyTorch implementation of our AAAI-2022 paper, in which we propose P

Zhying 77 Dec 21, 2022
GUI for TOAD-GAN, a PCG-ML algorithm for Token-based Super Mario Bros. Levels.

If you are using this code in your own project, please cite our paper: @inproceedings{awiszus2020toadgan, title={TOAD-GAN: Coherent Style Level Gene

Maren A. 13 Dec 14, 2022
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
PyTorch deep learning projects made easy.

PyTorch Template Project PyTorch deep learning project made easy. PyTorch Template Project Requirements Features Folder Structure Usage Config file fo

Victor Huang 3.8k Jan 01, 2023
Single Image Random Dot Stereogram for Tensorflow

TensorFlow-SIRDS Single Image Random Dot Stereogram for Tensorflow SIRDS is a means to present 3D data in a 2D image. It allows for scientific data di

Greg Peatfield 5 Aug 10, 2022
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention

AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet buil

3.4k Jan 07, 2023
Our solution for SSN Invente 2021's Hackathon

Our solution for SSN Invente 2021's Hackathon. To help maitain godowns in a pristine and safe condition using raspberry pi.

1 Jan 12, 2022
Automatic learning-rate scheduler

AutoLRS This is the PyTorch code implementation for the paper AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly published

Yuchen Jin 33 Nov 18, 2022
Trax — Deep Learning with Clear Code and Speed

Trax — Deep Learning with Clear Code and Speed Trax is an end-to-end library for deep learning that focuses on clear code and speed. It is actively us

Google 7.3k Dec 26, 2022
This is the repository for Learning to Generate Piano Music With Sustain Pedals

SusPedal-Gen This is the official repository of Learning to Generate Piano Music With Sustain Pedals Demo Page Dataset The dataset used in this projec

Joann Ching 12 Sep 02, 2022
Crawl & visualize ICLR papers and reviews

Crawl and Visualize ICLR 2022 OpenReview Data Descriptions This Jupyter Notebook contains the data crawled from ICLR 2022 OpenReview webpages and thei

Federico Berto 75 Dec 05, 2022
This code finds bounding box of a single human mouth.

This code finds bounding box of a single human mouth. In comparison to other face segmentation methods, it is relatively insusceptible to open mouth conditions, e.g., yawning, surgical robots, etc. T

iThermAI 4 Nov 27, 2022